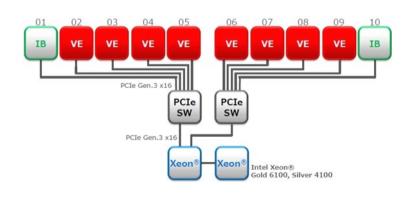
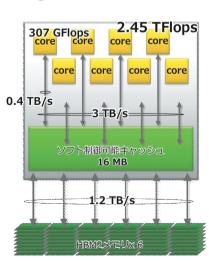
HPC-phys 勉強会

SX-Aurora を使ってみた

Hideo Matsufuru (KEK)




31 January 2020

SX-Aurora@KEK

- NEC SX-Aurora TSUBASA A500-64 1 rack (64 VE/8 VH)
 - NEC ベクトルアーキテクチャの最新版
 - ノード構成: Vector Host (VH) + 8 x Vector Engine (VE)
 - プログラムは VE上で直接実行、システムコールをVHにオフロード
 - Peak performance: 156.8 TFlops, 3 TB memory
 - 2020年3月に2倍に増強
- Vector Engine
 - 8 cores, 2.46 TFlops (DP)
 - Memory B/W: 1228 GB/s (B/F=0.5)
 - Vector length = 256, #vector register = 64

プログラミング

- "VE (Vector Engine) execution model"
 - プログラムはVEで実行 (明示的なオフロードは不要)
 - → 通常のノードと同じように使用
 - I/O などのシステムコールをVH (Vector Host) へ "オフロード"
 - 通常のコードを再コンパイルして利用可
 - 性能が不十分なら指示文の挿入などで細かく制御
 - プロファイラによる分析

開発環境

- Fortran, C/C++ コンパイラ (自動ベクトル化)
- MPI, OpenMP, 最適化ライブラリ (BLAS, LAPACK など)
- プロファイラ、デバッガ

素粒子宇宙原子核シミュレーションプログラム

青山龍美、日本物理学会2019年秋季大会スライドより改編

- 素粒子・原子核・宇宙物理学分野の大規模シミュレーションに基づく 理論的研究を推進
 - これまでのKEK大型シミュレーション研究に続く共同利用プログラム
 - 計算基礎化学連携拠点(JICFuS)によるサポートの下で共同利用を実施し、 計算資源を提供
 - 大規模実験プロジェクトとの連携:実験データを精密に予言する理論計算 により実験の成果の最大化を図る
- 研究課題を公募

http://research.kek.jp/group/pna-sp/

- 研究テーマを設定しグループを組織、代表者が申請
- 公募要項についてはKEK共同利用実験を参照
- 一般利用の課題は随時受付
- 大型利用の申請: 間もなく2020年度の公募を予定

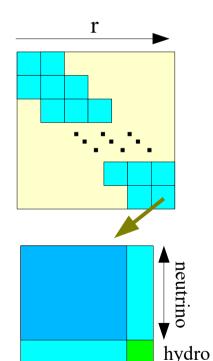
使ってみた

- 球対称性(1D)の下での超新星爆発
 - 住吉さん(沼津高専)との共同研究
 - 2019年秋の学会で報告
 - ブロック三重行列の線形方程式+衝突項の計算 (ニュートリノ反応過程~積分計算)
 - ベースコードはFortran, 一部 C (GPU利用のための変更) + MPI

• 格子QCD

- Bridge++プロジェクトでの研究
- 2019年秋の学会で青山さんが報告
- 4次元格子上のステンシル計算: 疎行列の線型方程式
- C++, MPI + OpenMP

超新星爆発シミュレーション


Lagrangian hydrodynamics + S_N + Implicit scheme

S. Yamada, ApJ 475 (1997) 720, A&A 344 (1999) 533

$$f(t + \Delta t) = f(t) + \Delta t \cdot F(t + \Delta t)$$

• 時間発展の各ステップで係数行列(ブロック三重対角)の線型方程式を解く必要

$$M = \begin{pmatrix} B_1 & C_1 & 0 & & \dots & \\ A_2 & B_2 & C_2 & 0 & & \\ 0 & A_3 & B_3 & C_3 & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ & & 0 & A_{n-1} & B_{n-1} & C_{n-1} \\ 0 & \dots & 0 & A_n & B_n \end{pmatrix}$$

- ブロック行列は密、ランク ~ O(500)
- 反復解法+重み付きJacobi前処理

A. Imakura et al. JSIAM Letter 4 (2012) 41

- 衝突項: ニュートリノ・物質相互作用(現在9種類)
 - 基本的には積分計算

超新星爆発シミュレーション

Elapsed time [sec]/iteration

$$N_r = 256, N_{E_{\nu}} = 14, N_{\text{ang}} = 6$$

System	IBM POWER8	POWER8+Pascal	SX-Aurora	
Accelerator		NVIDIA P100 x4	Vector Engine x1	
#core/device (DP)	20 (16 used)	1792	8	
Peak/device (DP)	0.46 TFlops	4.7 TFlops	2.46 TFlops	
Memory Bandwidth		720 GB/s	1228 GB/s	
Elapsed time [sec]				
Collision term	0.441	0.30	2.4 (C-code)	
Iterative solver	3.21	1.59	0.76 (Fortran)	

• SX-Aurora 1 VE (8 core) を 8 MPI process で使用 (flat-MPI)

- Fortran は original code、C は OpenACC version を適用
- ベクトル演算器に合わせたチューニングは未実施
- 線形ソルバーは Fortran コードで十分な効率 (Cf. C-code: 2.6 sec)
- Collision term は C-code の方が高速 (Fortran: 13.5 sec)
 - → もう少し速くしたい: ベクトルレジスタに合わせた構造変更が必要

格子QCD

Bridge++

- 格子ゲージ理論のための汎用コード
- オブジェクト指向、C++
- 設計方針: 可読性、拡張性、移植性、高性能
- 2009年開発開始、2012年公開、現在 ver.1.5.3 (2019.12)
- 現在の開発メンバー:
 - Y. Akahoshi, S. Aoki (YITP), T. Aoyama, Y. Namekawa, H. Matsufuru (KEK), I. Kanamori (RIKEN), K. Kanaya, Y. Taniguchi (Tsukuba), H. Nemura (RCNP), and contributors
- 最新アーキテクチャへの対応
 - Bridge++ "core library" + Extensions (alternative code)
 - → SIMD (KNL, Xeon Skylake), GPU (OpenACC), etc.
 - 今回のターゲット: Vector architecture

格子QCD

• 実装方針

- サイトループでベクトル化
- AoS (Array of Structure) から SoA にデータレイアウトを変更→ サイトループを最内側へ
- ループ長を SX のベクトル長 256 に合わせる
- コンパイラの出力を見て必要なら指示文を入れる
- プロファイラ (Ftrace)

• 現状

- Wilson, staggered フェルミオンの線型ソルバーが実装済
- MPI 並列化はOK, OpenMP マルチスレッド化を実装中

格子QCD

結果

- Cf. 青山龍美、日本物理学会 2019年秋季大会

	Single core 16x16x8x8	1 VE (8 cores) 16x16x16x32 /[1,1,2,4]
Wilson mult	41.7 GFlops	81.8 GFlops
Staggered mult	31.4 GFlops	80.0 GFlops
Wilson solver (BiCGStab)	29.1 GFlops	79.1 GFlops
peak performance	308 GFlops	2.42 TFlops

- 1 core では ~10% の性能、しかし 8 process では並列性能が不十分
- ベクトル化率 99.9, 平均ベクトル長 256: 十分なベクトル化
- 並列性能が悪い原因は現在調査中
- マルチスレッド化の方が良い? 現在実装中

まとめ

- SX-Aurora はベクトルアーキテクチャ
 - Byte/Flop が大きい (~0.5) のが特長
 - ベクトル長が長い計算に有効
 - Vector Engine でコードを実行 (通常のノードのように使える)
- プログラミング
 - 再コンパイルしてそこそこの性能は出る
 - ベクトルエンジンの特長を活かすにはチューニングが必要
 - 高速化、特に並列性能向上のテクニックを策定中
- 共同利用: KEK 素粒子原子核宇宙シミュレーションプログラムを 通して利用可能

Home Themes Committees Workshops Call for Papers Submission Site Home

Ouick Links Instructions for Authors Registration Info ORCID

Publishing Open Access in LNCS

The 20th International Conference on Computational Science and its **Applications**

The 20th International Conference on Computational Science and Applications (ICCSA 2020) will be held on July 1 - 4, 2020 in Cagliari, Italy in collaboration with the University of Cagliari, Italy.

ICCSA 2020

- 1-4 July 2020 at Cagliari, Italy
- Wokshop "Large Scale Simulation Science"
- Paper submission: deadline 15 Mar 2020

Cagliari

Search