格子量子色力学におけるソルバーについて

Yusuke Namekawa (KEK)

2

5

9

 $\mathbf{20}$

Contents

1	Introduction

- 2 Solvers in lattice QCD
- **3** Benchmark results
- 4 Additional hot topics with multiple right hand side 12

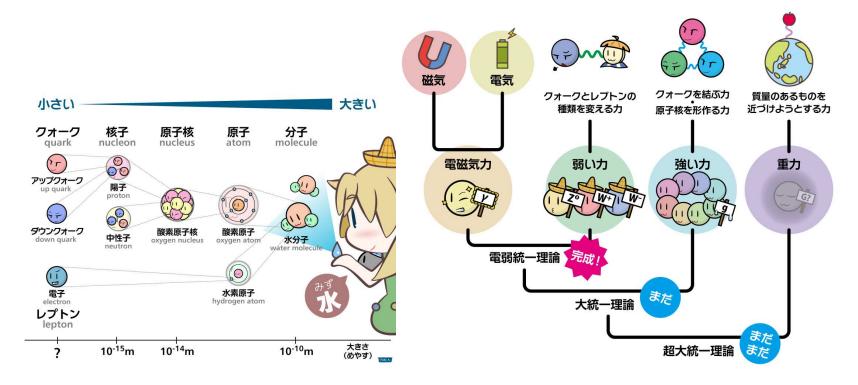
5 Summary

1 Introduction

All materials are made from quarks and leptons

cf. Kanamori-san's talk at the 2nd HPC-Phys meeting

• Theory of the strong interaction among quarks is called "Quantum ChromoDynamics(QCD)"



http://higgstan.com/ \leftarrow the designer got PhD on particle physics experiment Yusuke Namekawa(KEK) -2/21 - HPC-Phys meeting [Quantum ChromoDynamics(QCD)]

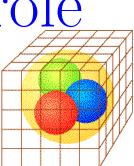
Theory(Lagrangian) is known, but is difficult to be solved analytically

$$\mathcal{L}_{QCD} = \bar{q}(i\not\!\!D - m)q - \frac{1}{4}G^2$$

- One of Millennium Problems http://www.claymath.org/millennium-problems \rightarrow You will win one million USD, if you solve this problem
- \diamond (cf. one of Millennium Problems on Poincare conjecture has already been solved)
- Numerical simulation of QCD on discretized spacetime (lattice QCD) is possible

◇ Ax = b plays the central role → Solver is important

cf. Kanamori-san's and Ishikawa-san's talks at the 2nd, 3rd HPC-Phys meetings



Yusuke Namekawa(KEK) – 3 / 21 –

http://www-het.ph.tsukuba.ac.jp HPC-Phys meeting

[Concrete form of A for Ax = b in lattice QCD]

- Concrete form of A depends on the fermion formulation
 - ♦ One choice is Wilson-type fermion(9-point stencil in 4-dimension, complex non-symmetric large sparse matrix)

cf. Kanamori-san's and Ishikawa-san's talks at the 2nd, 3rd HPC-Phys meetings

• Condition number K(A) becomes larger for smaller quark mass m_{quark} cf. Ishikawa-san's talk at the 3rd HPC-Phys meeting

$$\& K(A(m_{\rm ud})) = O(2700), K(A(m_{\rm s})) = O(100), m_{\rm s}/m_{\rm ud} \sim 27$$

$$A(x,y) = \delta_{x,y} - \kappa \sum_{\mu=1}^{4} \left\{ (1 - \gamma_{\mu}) U_{\mu}(x) \delta_{x+\mu,y} + (1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x-\mu) \delta_{x-\mu,y} \right\}$$

: complex $n \times n$ non-symmetric matrix, $n \sim 10^{10}$ for a typical lattice QCD $m_{\text{quark}} = \frac{1}{2} \left(\frac{1}{\kappa} - (\text{const}) \right)$ $K(A) \propto \frac{1}{m_{\text{quark}}}$

Yusuke Namekawa(KEK) – 4 / 21 – HPC-Phys meeting

2 Solvers in lattice QCD

Major solvers in lattice QCD are tabulated

- There are many solver algorithms for lattice QCD \rightarrow Only solvers in the table are explained
- There are many open sources for lattice QCD \rightarrow Only open sources in the table are explained
- (Preconditioners are not covered in this talk)

Solver	Open source
CG Hestenes, Stiefel (1952)	Bridge++
BiCGStab van der Vorst(1992)	Bridge++, CCSQCDSolverBench
BiCGStab(L) Sleijpen, Fokkema (1993)	Bridge++
BiCGStab(DS-L) Miyauchi et al.(2001)	Bridge++
BiCGStab(IDS-L) Itoh, Namekawa (2003)	Bridge++
GMRES(m) Saad, Schultz(1986)	Bridge++
MultiGrid A.Brandt(1977)	DDalphaAMG

Yusuke Namekawa(KEK) -5 / 21 - HPC-Phys meeting

[Lattice QCD code Bridge++ (our open source code)]

- Bridge++ is a code set for numerical simulations of lattice gauge theories including QCD
 → Ver.1.5.1 has been released in Aug 2019
- Major solvers(BiCGStab series,CG,GMRES(m)) are covered
- Project members:

Y.Akahoshi (YITP), S.Aoki (YITP), T.Aoyama (KEK), I.Kanamori (R-CCS), K.Kanaya (Tsukuba), H.Matsufuru (KEK), Y.Namekawa (KEK), H.Nemura (RCNP), Y.Taniguchi (Tsukuba)

 $\diamondsuit~$ I have been the chairperson since 2016

Yusuke Namekawa(KEK) -6 / 21 - HPC-Phys meeting

[CCS QCD SolverBench]

- CCS QCD SolverBench is a benchmark BiCGStab program of QCD developed by another CCS(Univ of Tsukuba)
 → Ver.0.999(rev.248) has been released in Sep 2017
- BiCGStab with even-odd preconditioning is employed
- Project members:

K-I.Ishikawa (Hiroshima), Y.Kuramashi (Tsukuba), A.Ukawa (Tsukuba), T.Boku (Tsukuba)

QCD (Qua	antum Chromo Dynamics):量子色力学	
トッゴページ > Q.2 (Quantum Chromo Dynamics):量子色力学コード		
QCD (Quantum Chromo Dynamics):量子色 力学コード	 CCS_QCD_Solver_Bench-r248.tar.gz (Description : CCSQCDSolverBench) 	
	 CCS_QCD_Solver_Bench_MIC_OFLD-r171.tar.gz (Description : C CSQCDSolverBenchMIC) 	
[°] CCSQCDSolverBench		
CCSQCDSolverBenchMIC		

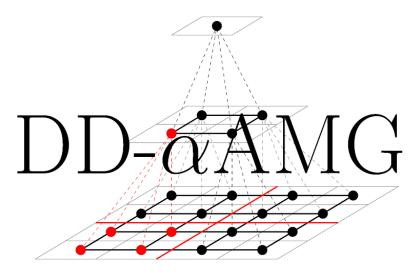
https://www.ccs.tsukuba.ac.jp/qcd/

Yusuke Namekawa(KEK) -7/21 – HPC-Phys meeting

[DDalphaAMG]

- DDalphaAMG is a multigrid solver program in lattice QCD
 → Ver.1701 has been released in Jan 2017
 → Ported to K-computer in Apr 2018 Ishikawa,Kanamori(2018)
- Adaptive Algebraic MultiGrid(αAMG) algorithm with Domain Decomposed(DD) smoother is employed
- Project members:

M.Rottmann, A.Strebel, S.Heybrock, S.Bacchio, B.Leder, I.Kanamori



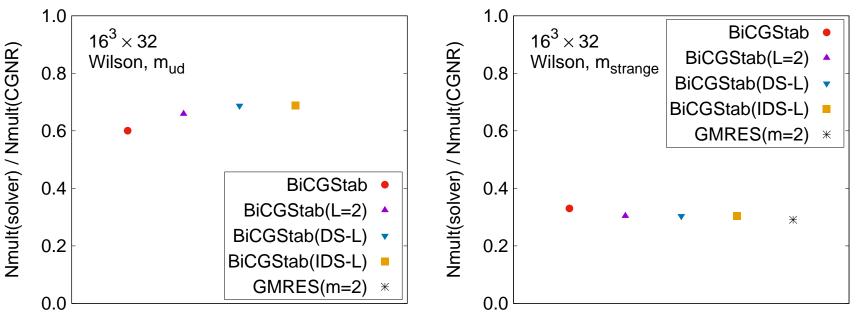
https://github.com/DDalphaAMG

https://github.com/i-kanamori/DDalphaAMG/tree/K

3 Benchmark results

[CG vs BiCGStab series, GMRES(m) by Bridge++]

- For m_{ud} (up-down quark mass), which requires a huge Krylov space, BiCGStab series gain 30-40%, while GMRES(m=2-16) shows no gain
- For m_s (strange quark mass), which requires not so large Krylov space, BiCGStab series and GMRES(m) gain a factor of 3

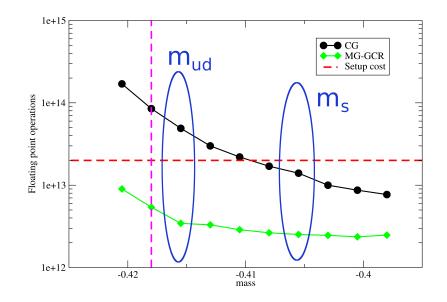


Yusuke Namekawa(KEK) -9/21 - HPC-Phys meeting

[CG vs MG(MultiGrid)] Babich et al.(2010)

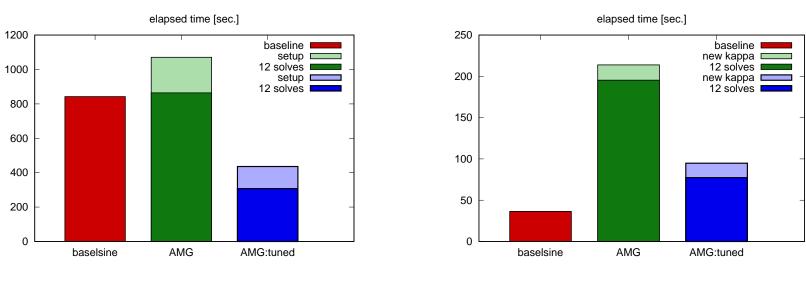
- For $m_{\rm ud}$ (up-down quark mass), which requires a huge Krylov space, multigrid gains a factor of 3
- For m_s (strange quark mass), which requires not so large Krylov space, multigrid has no gain due to its overhead
 - \diamondsuit Memory cost of multigrid is larger than that of CG by a factor of 4–5

$$\diamond$$
 NB. $m_{\text{quark}}^{\text{phys}} \propto (m_{\text{quark}}^{\text{bare}} - m_{\text{quark}}^{\text{critical}})$ with $m_{\text{quark}}^{\text{critical}} = -0.4175$



[Nested BiCGStab with precond(SAP + SSOR) vs multigrid] $I_{Shikawa,Kanamori(2018)}$ Similar results are obtained on K-computer

- For $m_{\rm ud}$ (up-down quark mass), which requires a huge Krylov space, multigrid gains a factor of 2 over the baseline BiCGStab
- For m_s (strange quark mass), which requires not so large Krylov space, multigrid has no gain due to its overhead



 \diamond The best solver depends on the target system

Up-down quark case

Strange quark case

4 Additional hot topics with multiple right hand side

- Block solver(multiple right hand side solver) O'Leary(1980)
- Truncated solver Collins, Bali, Schäfer (2007)
- Deflation de Forcrand(1996),Lüscher(2007)

[Block solver(multiple right hand side solver)] O'Leary(1980)

$$AX = B$$
 instead of $Ax = b$

where

- The philosophy is sharing Krylov space for multiple right hand sides
 - \diamondsuit Practical advantage is better use of cache, which increase the sustained speed by a factor of 2-5
- Two problems are known \rightarrow Next page

[Block solver(continued)]

• There are some attempts in lattice QCD

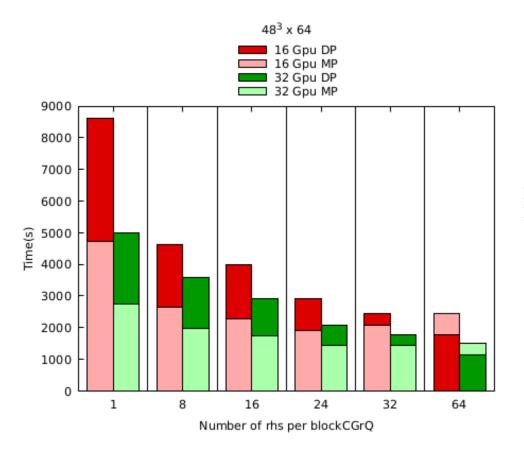
de Forcrand(1996), Sakurai et al.(2010), Tadano et al.(2010), Nakamura et al.(2011), Birk and Frommer(2012,2014), Clark et al.(2018), de Forcrand and Keegan(2018)

- \diamond Problem 1 : naive Block solver has a gap between true and recursion residuals \rightarrow Improved versions are proposed Dubrulle(2001), Tadano et al.(2009), ...
- Problem 2 : Block solver often fails to converge (breakdown and stagnation), though it can be tamed in part by QR decomposition Dubrulle(2001), Nakamura et al.(2011), ...

 \rightarrow We do not employ the block solver in a large scale simulation

[Block solver(continued)]

• Block solver(blockCGrQ) gains a factor of 2-5, if it converged



Clark et al.(2018)

DP := Double PrecisionMP := Mixed Precision

• Mixed precision is usually faster, but it is not for a larger number of rhs, probably due to less stability [Truncated solver] Collins, Bali, Schäfer (2007)

- Truncated solver := many approximate solver results corrected by exact solver result
- (cf. all mode averaging := truncated solver + low-mode averaging)
 Blum et al.(2012)
 - \diamondsuit Truncated solver leads to a factor of 10 speed up for an expectation value constructed from the solution x

$$\left\langle O^{\text{exact}}[x] \right\rangle = \left\langle O^{\text{improved}}[x] \right\rangle, \quad \left\langle O \right\rangle := \frac{1}{N_{\text{sample}}} \sum_{i=1}^{N_{\text{sample}}} O_i$$

where

$$O^{\text{improved}}[x] = (O[x_1^{\text{exact}}] - O[x_1^{\text{approx}}]) + \frac{1}{N_{\text{approx}}} \sum_{\substack{n'_{\text{rhs}}=2}}^{N_{\text{approx}}} O[x_n'_{\text{rhs}}]$$

$$Ax_{n_{\text{rhs}}}^{\text{exact}} = b_{n_{\text{rhs}}}, \text{ strict stopping condition (ex. 10-16)}$$

$$Ax_{n'_{\text{rhs}}}^{\text{approx}} = b_{n'_{\text{rhs}}}, \text{ loose stopping condition (ex. truncated at N_{\text{iter}} = 50)}$$

$$\forall n_{\text{rhs}}, \forall n'_{\text{rhs}} = 1, 2, \dots \quad \text{larger gain for } n_{\text{rhs}} < n'_{\text{rhs}}$$

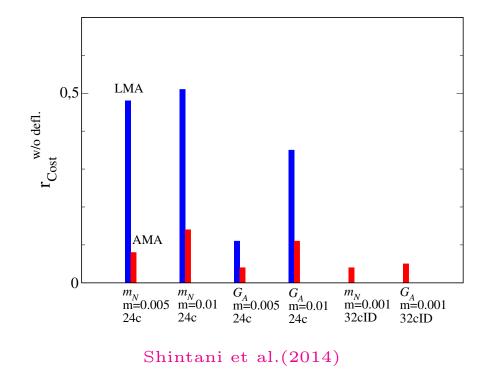
Yusuke Namekawa(KEK) -16 / 21 - HPC-Phys meeting

[Truncated solver(continued)]

• Truncated solver (+ low mode averaging) leads to O(10) speed up

 $\diamondsuit\,$ NB. care is needed for the choice of the truncation

(ex. $N_{\text{iter}} = 50$). Too aggressive choice gives a wrong result.



[Deflation] de Forcrand(1996),Lüscher(2007),...

- Deflation := eigenvectors + solver for the remaining part
 - \diamond Deflation is independent of $n_{\rm rhs}$ i.e. larger $n_{\rm rhs}$ gives larger gain
 - \diamond The gain is a factor of 2-8, though deflation needs overhead and large memory consumption of eigenvector estimation

Then

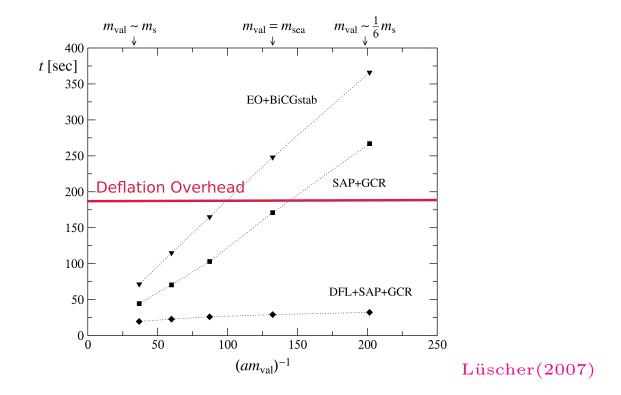
$$\begin{aligned} x_{n_{\mathrm{rhs}}} &= x_{n_{\mathrm{rhs}}}^{\mathrm{solver}} + \sum_{i,j=1}^{N_{\mathrm{deflation}}} \phi_{i} A_{ij}^{-1}(\phi_{j}, b_{n_{\mathrm{rhs}}}) \\ & \text{where} \\ P_{\mathrm{deflation}} A x_{n_{\mathrm{rhs}}}^{\mathrm{solver}} &= P_{\mathrm{deflation}} b_{n_{\mathrm{rhs}}} \\ P_{\mathrm{deflation}} x_{n_{\mathrm{rhs}}} &= x_{n_{\mathrm{rhs}}} - \sum_{i,j=1}^{N_{\mathrm{deflation}}} A \phi_{i} A_{ij}^{-1}(\phi_{j}, b_{n_{\mathrm{rhs}}}) \end{aligned}$$

Yusuke Namekawa(KEK) -18 / 21 - HPC-Phys meeting

[Deflation(continued)]

• The gain is a factor of 2-8, though deflation gives overhead

 \diamond NB. the best choice of $N_{\text{deflation}}$ depends on the system



5 Summary

Overview of solvers in lattice QCD was presented

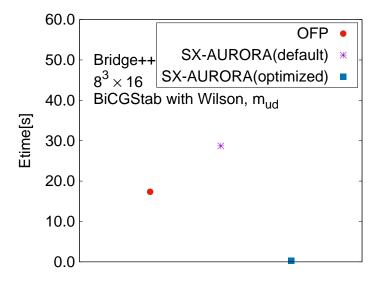
- Major solvers are covered by open sources(Bridge++, CCSQCDSolver-Bench, DDalphaAMG, ...)
- Benchmark results show the best solver depends on the physics
 - \diamond multigrid is best for $m_{\rm ud}$ (requiring a huge Krylov space)
 - \diamond BiCGStab series and GMRES(m) is faster for $m_{\rm s}$ (requiring not so large Krylov space)
- Additional hot topics with multiple right hand side are explained
 - ♦ Block solver(multiple right hand side solver) gains a factor of 2-5, though it often fails to converge
 - \diamond Truncated solver leads to O(10) speed up, though too aggressive truncation gives a wrong result
 - ♦ Deflation gains a factor of 2-8, though it needs overhead and large memory consumption of eigenvector estimation

[Not covered in this talk]

- Preconditioner
 - Even-odd(red/black), SAP(Schwarz Alternating Procedure), ILU, SSOR, ...

[Advertise new supercomputer at KEK(SX-AURORA,156.8 TFlop)]

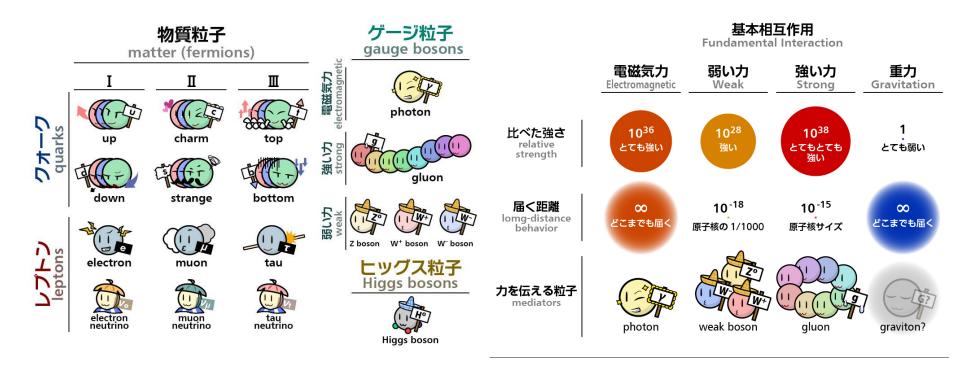
- Unfortunately KEK supercomputer had been terminated since 2017, but is renewal in 2019 http://scwww.kek.jp/
- Tuning for discrete vector accelerator leads to O(100) speed up



Yusuke Namekawa(KEK) – 21 / 21 – HPC-Phys meeting

Yusuke Namekawa(KEK) -22 / 21 - HPC-Phys meeting

[Table of elementary particles and interactions]



 $http://higgstan.com/ \leftarrow$ the designer got PhD on particle physics experiment