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1 Introduction

All materials are made from quarks and leptons
cf. Kanamori-san’s talk at the 2nd HPC-Phys meeting

• Theory of the strong interaction among quarks is called
”Quantum ChromoDynamics(QCD)”

http://higgstan.com/ ← the designer got PhD on particle physics experiment
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[Quantum ChromoDynamics(QCD)]

• Theory(Lagrangian) is known, but is difficult to be solved analytically

LQCD = q̄(iD/−m)q −
1

4
G2

♦ One of Millennium Problems http://www.claymath.org/millennium-problems

→ You will win one million USD, if you solve this problem

♦ (cf. one of Millennium Problems on Poincare conjecture has
already been solved)

• Numerical simulation of QCD on discretized spacetime (lattice QCD)
is possible

♦ Ax = b plays the central role
→ Solver is important
cf. Kanamori-san’s and Ishikawa-san’s talks at the 2nd, 3rd

HPC-Phys meetings

http://www-het.ph.tsukuba.ac.jp
Yusuke Namekawa(KEK) – 3 / 21 – HPC-Phys meeting



[Concrete form of A for Ax = b in lattice QCD]

• Concrete form of A depends on the fermion formulation

♦ One choice is Wilson-type fermion(9-point stencil in 4-dimension,
complex non-symmetric large sparse matrix)
cf. Kanamori-san’s and Ishikawa-san’s talks at the 2nd, 3rd HPC-Phys meetings

• Condition number K(A) becomes larger for smaller quark mass mquark

cf. Ishikawa-san’s talk at the 3rd HPC-Phys meeting

♦ K(A(mud)) = O(2700), K(A(ms)) = O(100), ms/mud ∼ 27

A(x, y) = δx,y − κ

4
∑

µ=1

{

(1 − γµ)Uµ(x)δx+µ,y + (1 + γµ)U
†
µ(x − µ)δx−µ,y

}

: complex n × n non-symmetric matrix, n ∼ 10
10

for a typical lattice QCD

mquark =
1

2

( 1

κ
− (const)

)

K(A) ∝
1

mquark
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2 Solvers in lattice QCD

Major solvers in lattice QCD are tabulated

• There are many solver algorithms for lattice QCD
→ Only solvers in the table are explained

• There are many open sources for lattice QCD
→ Only open sources in the table are explained

• (Preconditioners are not covered in this talk)

Solver Open source

CG Hestenes,Stiefel(1952) Bridge++
BiCGStab van der Vorst(1992) Bridge++, CCSQCDSolverBench

BiCGStab(L) Sleijpen,Fokkema(1993) Bridge++
BiCGStab(DS-L) Miyauchi et al.(2001) Bridge++
BiCGStab(IDS-L) Itoh,Namekawa(2003) Bridge++

GMRES(m) Saad,Schultz(1986) Bridge++
MultiGrid A.Brandt(1977) DDalphaAMG
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[Lattice QCD code Bridge++ (our open source code)]

• Bridge++ is a code set for numerical simulations of lattice gauge
theories including QCD
→ Ver.1.5.1 has been released in Aug 2019

• Major solvers(BiCGStab series,CG,GMRES(m)) are covered

• Project members:
Y.Akahoshi (YITP), S.Aoki (YITP), T.Aoyama (KEK), I.Kanamori (R-CCS), K.Kanaya (Tsukuba),
H.Matsufuru (KEK), Y.Namekawa (KEK), H.Nemura (RCNP), Y.Taniguchi (Tsukuba)

♦ I have been the chairperson since 2016
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[CCS QCD SolverBench]

• CCS QCD SolverBench is a benchmark BiCGStab program of QCD
developed by another CCS(Univ of Tsukuba)
→ Ver.0.999(rev.248) has been released in Sep 2017

• BiCGStab with even-odd preconditioning is employed

• Project members:
K-I.Ishikawa (Hiroshima), Y.Kuramashi (Tsukuba), A.Ukawa (Tsukuba), T.Boku (Tsukuba)

https://www.ccs.tsukuba.ac.jp/qcd/
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[DDalphaAMG]

• DDalphaAMG is a multigrid solver program in lattice QCD
→ Ver.1701 has been released in Jan 2017
→ Ported to K-computer in Apr 2018 Ishikawa,Kanamori(2018)

• Adaptive Algebraic MultiGrid(αAMG) algorithm with Domain
Decomposed(DD) smoother is employed

• Project members:
M.Rottmann, A.Strebel, S.Heybrock, S.Bacchio, B.Leder, I.Kanamori

https://github.com/DDalphaAMG

https://github.com/i-kanamori/DDalphaAMG/tree/K
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3 Benchmark results

[CG vs BiCGStab series, GMRES(m) by Bridge++]

• For mud (up-down quark mass), which requires a huge Krylov space,
BiCGStab series gain 30-40%, while GMRES(m=2–16) shows no gain

• For ms (strange quark mass), which requires not so large Krylov space,
BiCGStab series and GMRES(m) gain a factor of 3
♦ Prescription is added to BiCGStab for better stability

Sleijpen and van der Vorst(1995)
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[CG vs MG(MultiGrid)] Babich et al.(2010)

• For mud (up-down quark mass), which requires a huge Krylov space,
multigrid gains a factor of 3

• For ms (strange quark mass), which requires not so large Krylov space,
multigrid has no gain due to its overhead

♦ Memory cost of multigrid is larger than that of CG by a factor of 4–5

♦ NB. m
phys
quark

∝ (mbare
quark −mcritical

quark ) with mcritical
quark = −0.4175
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[Nested BiCGStab with precond(SAP + SSOR) vs multigrid] Ishikawa,Kanamori(2018)

Similar results are obtained on K-computer

• For mud (up-down quark mass), which requires a huge Krylov space,
multigrid gains a factor of 2 over the baseline BiCGStab

• For ms (strange quark mass), which requires not so large Krylov space,
multigrid has no gain due to its overhead

♦ The best solver depends on the target system
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4 Additional hot topics with multiple right hand side

Axnrhs = bnrhs

where

A := n× n matrix

n ∼ 1010 for a typical lattice QCD

∀nrhs = 1, 2, ...

• Block solver(multiple right hand side solver) O’Leary(1980)

• Truncated solver Collins,Bali,Schäfer(2007)

• Deflation de Forcrand(1996),Lüscher(2007)
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[Block solver(multiple right hand side solver)] O’Leary(1980)

AX = B instead of Ax = b

where

A := n× n matrix,

X,B := n× nrhs matrix

n ∼ 1010 for a typical lattice QCD

∀nrhs = 1, 2, ...

• The philosophy is sharing Krylov space for multiple right hand sides

♦ Practical advantage is better use of cache, which increase the
sustained speed by a factor of 2-5

• Two problems are known
→ Next page
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[Block solver(continued)]

• There are some attempts in lattice QCD
de Forcrand(1996), Sakurai et al.(2010), Tadano et al.(2010), Nakamura et al.(2011), Birk and

Frommer(2012,2014), Clark et al.(2018), de Forcrand and Keegan(2018)

♦ Problem 1 : naive Block solver has a gap between true and
recursion residuals
→ Improved versions are proposed Dubrulle(2001), Tadano et al.(2009), ...

♦ Problem 2 : Block solver often fails to converge (breakdown and
stagnation), though it can be tamed in part by QR decomposition
Dubrulle(2001), Nakamura et al.(2011), ...

→ We do not employ the block solver in a large scale simulation
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[Block solver(continued)]

• Block solver(blockCGrQ) gains a factor of 2-5, if it converged

Clark et al.(2018)

DP := Double Precision
MP := Mixed Precision

• Mixed precision is usually faster, but
it is not for a larger number of rhs,
probably due to less stability
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[Truncated solver] Collins,Bali,Schäfer(2007)

• Truncated solver := many approximate solver results corrected by
exact solver result

• (cf. all mode averaging := truncated solver + low-mode averaging)
Blum et al.(2012)

♦ Truncated solver leads to a factor of 10 speed up for an expecta-
tion value constructed from the solution x

〈

O
exact

[x]
〉

=
〈

O
improved

[x]
〉

, 〈O〉 :=
1

Nsample

Nsample
∑

i=1

Oi

where

O
improved

[x] = (O[x
exact
1 ] − O[x

approx
1 ]) +

1

Napprox

Napprox
∑

n′
rhs

=2

O[x
approx

n′
rhs

]

Ax
exact
nrhs

= bnrhs
, strict stopping condition (ex. 10−16)

Ax
approx

n′
rhs

= b
n′
rhs

, loose stopping condition (ex. truncated at Niter = 50)

∀nrhs, ∀n
′
rhs = 1, 2, ... larger gain for nrhs < n

′
rhs
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[Truncated solver(continued)]

• Truncated solver (+ low mode averaging) leads to O(10) speed up

♦ NB. care is needed for the choice of the truncation
(ex. Niter = 50). Too aggressive choice gives a wrong result.
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[Deflation] de Forcrand(1996),Lüscher(2007),...

• Deflation := eigenvectors + solver for the remaining part

♦ Deflation is independent of nrhs i.e. larger nrhs gives larger gain

♦ The gain is a factor of 2-8, though deflation needs overhead and
large memory consumption of eigenvector estimation

Axnrhs
= bnrhs

Aφi = λiφi, i = 1, ..., Ndeflation

Then

xnrhs
= x

solver
nrhs

+

Ndeflation
∑

i,j=1

φiA
−1
ij

(φj, bnrhs
)

where

PdeflationAx
solver
nrhs

= Pdeflationbnrhs

Pdeflationxnrhs
= xnrhs

−

Ndeflation
∑

i,j=1

AφiA
−1
ij

(φj, bnrhs
)

Yusuke Namekawa(KEK) – 18 / 21 – HPC-Phys meeting



[Deflation(continued)]

• The gain is a factor of 2-8, though deflation gives overhead

♦ NB. the best choice of Ndeflation depends on the system

Lüscher(2007)
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5 Summary

Overview of solvers in lattice QCD was presented

• Major solvers are covered by open sources(Bridge++, CCSQCDSolver-
Bench, DDalphaAMG, ...)

• Benchmark results show the best solver depends on the physics

♦ multigrid is best for mud (requiring a huge Krylov space)

♦ BiCGStab series and GMRES(m) is faster for ms (requiring not
so large Krylov space)

• Additional hot topics with multiple right hand side are explained

♦ Block solver(multiple right hand side solver) gains a factor of 2-5,
though it often fails to converge

♦ Truncated solver leads to O(10) speed up, though too aggressive
truncation gives a wrong result

♦ Deflation gains a factor of 2-8, though it needs overhead and large
memory consumption of eigenvector estimation
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[Not covered in this talk]

• Preconditioner

♦ Even-odd(red/black), SAP(Schwarz Alternating Procedure), ILU,
SSOR, ...

[Advertise new supercomputer at KEK(SX-AURORA,156.8 TFlop)]

• Unfortunately KEK supercomputer had been terminated since 2017,
but is renewal in 2019 http://scwww.kek.jp/

• Tuning for discrete vector accelerator leads to O(100) speed up
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Appendix
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[Table of elementary particles and interactions]

http://higgstan.com/ ← the designer got PhD on particle physics experiment
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