
第11回HPC-Phys勉強会10th June, 2021 

Masazumi Honda
(本多正純)

素粒子物理学のための量子計算入門

～基礎＆スピン系編～

※zoomにて録画予定



Quantum computer sounds growing well…
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Quantum computer sounds growing well…

This lecture = How can we use it for particle physics?

[Credit: Forest Stearns, Google AI Quantum  
Artist in Residence (CC BY-ND 4.0)] [Credit: Erik Lucero, Research Scientist and Lead  Production Quantum Hardware, Google (CC BY-ND 4.0)]



Application of Quantum Computation  
to

Quantum Field Theory (QFT)

This lecture is a preparation for

・Generic motivation:

simply would like to use powerful computers?

・Specific motivation:



Application of Quantum Computation  
to

Quantum Field Theory (QFT)

This lecture is a preparation for

・Generic motivation:

simply would like to use powerful computers?

・Specific motivation:

Quantum computation is suitable for Hamiltonian formalism

Liberation from infamous sign problem in Monte Carlo?
(next slide)



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

②

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:

(this point is explained to give a motivation & isn’t  
essential to understand main contents of the lectures)



Sign problem in Monte Carlo simulation
Conventional approach to simulate QFT:

②Numerically Evaluate it by (Markov Chain) Monte Carlo method  
regarding the Boltzmann factor as a probability:

& make path integral finite dimensional:

① Discretize Euclidean spacetime by lattice:

(this point is explained to give a motivation & isn’t  
essential to understand main contents of the lectures)



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”



・topological term

problematic when Boltzmann factor isn’t R≧0 & is highly oscillating

much worse

In Hamiltonian formalism,

sign problem is absent from the beginning

Sign problem in Monte Carlo simulation (Cont’d)

Markov Chain Monte Carlo:

probability

Examples w/ sign problem:

・real time 

・chemical potential

complex action

indefinite sign of fermion determinant

“ 𝑒𝑖𝑆(𝜙) ”

(∃various approaches within framework of path integral formalism but I’ll skip it )



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

regularization needed!



Cost of Hamiltonian formalism

We have to play with huge vector space

since QFT typically has ∞-dim. Hilbert space

Technically, computers have to 

memorize huge vector & multiply huge matrices

Quantum computers do this job?

regularization needed!



Should we care now as “users”?

Quantum computers don’t have sufficient powers yet.

Shouldn’t we start to care after quantum supremacy comes?



Should we care now as “users”?

Quantum computers don’t have sufficient powers yet.

Shouldn’t we start to care after quantum supremacy comes?

For instance, 

∃Many things to do even now in various contexts

・we haven’t established

・∃only 1 example so far to take a serious continuum limit 
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

(numerical/analytic/purely algorithmic/lat/th/ph)

how to efficiently pick up various real time physics 

how to put QCD efficiently on quantum computers

(e.g. scattering/dynamical hadronization)

I personally think:



Some good news…

・If you have google or facebook account,
you can immediately use IBM’s quantum computer for free

・I am beginner of both python and quantum computation
(started on June, 2019)

・Algorithms for simulating quantum system are much easier   
than ones for generic purpose (e.g. Shor’s algorithm for prime factorization)

・Simple code can be made by drug & drop in IBM’s website
and serious code is made by python

・It’s fun!!



1. Qubits and gates

3. Quantum simulation of Spin system

Plan

0. Introduction

4. Summary

2. Some demonstrations in IBM Q Experience



Qubit = Quantum Bit
Qubit = Quantum system w/ 2 dim. Hilbert space

Ex.) Spin 1/2 system:

(We don’t need to mind how it is realized as “users”)

“computational basis”

Basis:

Generic state:
w/



Single qubit operations
・Acting unitary operator: (multiplying 2x2 unitary matrix)

In quantum circuit notation,



Single qubit operations
・Acting unitary operator:

・Measurement:

(multiplying 2x2 unitary matrix)

(classical number)

In quantum circuit notation,



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Single qubit gates used here

X is “NOT”:

(just Pauli matrices)



Multiple qubits
2 qubits – 4 dim. Hilbert space:

N qubits – 2N dim. Hilbert space:



Two qubit gates used here

or equivalently

Controlled 𝑋 (NOT) gate:



Two qubit gates used here

or equivalently

Controlled 𝑋 (NOT) gate:

SWAP gate:

We’ll see  this is useful to 
compute Renyi entropy



Rule of the game

(classical number)

Do something interesting by a combination of 

&

action of Unitary operators:

measurements:



Universality
・Any unitary gate is a combination of single qubit gates & 𝐶𝑋

(“Single qubit gates & 𝐶𝑋 are universal”)  

Ex.) Toffoli

(controlled-controlled-NOT)



Universality
・Any unitary gate is a combination of single qubit gates & 𝐶𝑋

(“Single qubit gates & 𝐶𝑋 are universal”)  

・Any single qubit gate is approximated by a combination of  
𝐻 & 𝑇 in arbitrary precision

・𝐻, 𝑇 & 𝐶𝑋 are universal

Ex.) Toffoli

(controlled-controlled-NOT)



Errors in Quantum computer

In real quantum computer,

Qubits in quantum circuit ≠ isolated system

Interactions w/ environment cause errors/noises

We need to include “quantum error corrections”
which seem to require a huge number of qubits

(∼ major obstruction of the development)

This lecture won’t discuss quantum error corrections
but it can be taken into account in an independent way 
of details of algorithm  



(Classical) simulator for Quantum computer

Simulator

・Doesn’t have errors → ideal answers

Useful to test algorithm & estimate computational resources 

Quantum computation ⊂ Linear algebra

The same algorithm can be implemented in classical computer
but w/o speed-up (1 quantum step = many classical steps)

Tool to simulate quantum computer
by classical computer

=

・The same code can be run in quantum computer w/ speed-up

(More precisely, classical computer also has errors but its error correction is established)

(∼# of qubits, gates)



Short summary
・Qubit = Quantum bit

・Important gates:

・Do something interesting by a combination of
acting unitary op. & measurement 

・𝐻, 𝑇 & 𝐶𝑋 are universal

・Real quantum computer has errors

・Simulator Tool to simulate quantum computer
by classical computer

=



Some demonstrations 
in IBM Quantum Experience







A trivial problem: measure |0⟩



A trivial problem: measure |0⟩ (Cont’d)



Measure 1024 times in simulator



Trivial result

Of Course!



Measure 1024 times in quantum computer



Result of quantum computer?

This is the error!



Another trivial problem: measure |1⟩



Another trivial problem: measure |1⟩ (Cont’d)



Result of simulator (1024 shots)



Result of quantum computer (1024shots)

Error again



The simplest nontrivial problem: Hadamard gate



Result of simulator (1024 shots)

Not exactly 50:50 because of statistical errors 



Result of simulator (8192 shots)

Improved!



Result of quantum computer (1024 shots)

∃Both errors & statistical errors 



Result of quantum computer (8192 shots)

Statistical errors are improved



A trivial problem for 2 qubits



Result of simulator (1024 shots)

Note that notation is different from the ket notation



2 qubit operation by simulator



2 qubit operation by quantum computer (1024 shots)



Quantum simulation of Spin system



Warm up: 2-site transverse Ising model

x x

1 2

・construct time evolution operator

・obtain vacuum state

・compute vacuum expectation values

We are going to

・compute Renyi entropy



Time evolution operator

where

How do we express this in terms of elementary gates? 
(such as 𝑋, 𝑌, 𝑍, 𝑅𝑋,𝑌,𝑍, 𝐶𝑋 etc…)

Time evolution of any state is studied by acting the operator



Time evolution operator

Step 1: Suzuki-Trotter decomposition:

where

How do we express this in terms of elementary gates? 
(such as 𝑋, 𝑌, 𝑍, 𝑅𝑋,𝑌,𝑍, 𝐶𝑋 etc…)

(𝑀: large positive integer)

Time evolution of any state is studied by acting the operator

(∃higher order improvements)



Time evolution operator (Cont’d)

The 1st one is trivial:
acting on qubit 1acting on qubit 2



Time evolution operator (Cont’d)

The 1st one is trivial:

The 2nd one is nontrivial:

One can show (see next slide)

acting on qubit 1acting on qubit 2



Time evolution operator (Cont’d)

Proof:

Thus,



Quantum circuit for time evolution op.

=



Survival probability of free vacuum
For J=0, ground state is

Toy version of 
Schwinger effect

We can compute survival probability of the free vacuum:

Measure the probability having |00⟩ inside the state



Demonstration for the survival probability

Let’s compute it for

=



Demonstration for the survival probability (Cont’d)

Result by simulator w/ 1024 shots:



Result of simulator (1024 shots):

Result of quantum computer (1024 shots):



More serious computation

2 sites

4 sites

6 sites

8 sites



Adiabatic state preparation of vacuum 

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

Step 3: 

Step 2:



Adiabatic state preparation of vacuum 

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: 

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Adiabatic state preparation of vacuum 

If 𝐻𝐴(𝑡) has a unique ground state w/ a finite gap for ∀𝑡,
then the ground state of 𝐻target is obtained by

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: Use the adiabatic theorem

vac = lim
𝑇→∞

𝒯 exp −𝑖න
0

𝑇

𝑑𝑡 𝐻𝐴 𝑡 |vac0⟩

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



For transverse Ising model

Choose

Discretize the integral:

where



Magnetization
Once we get the vacuum, we can compute VEV of operators:

It is easiest to compute magnetization:

Transverse one is a bit more tricky:



Result by simulator (10000 shots)

exact diagonalization

adiabatic



2 sites 4 sites

6 sites 8 sites



Renyi entropy
Dividing total Hilbert space as

reduced density matrix is defined as 

Entanglement entropy:

n-th Renyi entropy:



Quantum algorithm for 2nd Renyi entropy
Consider (𝑁𝐴 +𝑁𝐵)-qubit system and the density matrix

Let’s divide the system into two systems:

& consider the 2nd Renyi entropy



Quantum algorithm for 2nd Renyi entropy
Consider (𝑁𝐴 +𝑁𝐵)-qubit system and the density matrix

[Hastings-Gonzalez-Kallin-Melko’10]

Let’s divide the system into two systems:

& consider the 2nd Renyi entropy

One can show (next slide)

For



Quantum algorithm for 2nd Renyi entropy (Cont’d)

Proof:



Demonstration: 2nd Renyi entropy of Bell state

Bell state:

Reduced density matrix:

2nd Renyi entropy:

Let’s reproduce it in IBM Q Experience



Demonstration: 2nd Renyi entropy of Bell state (Cont’d)

We know

The Bell state is written as

Therefore,

= |𝐵⟩



Demonstration: 2nd Renyi entropy of Bell state (Cont’d)

Result of simulator (1024 shots):



Result of simulator (1024 shots):

Result of quantum computer (1024 shots):



More direct way?

We’ve directly computed

rather than itself:

Can we directly compute it?

Yes, there is a way to compute expectation value 
of unitary op. under any state:

𝜓 U |𝜓⟩

(next slide)



“Hadamard test”: standard way to compute 𝜓 U |𝜓⟩

① Extend Hilbert space & consider the state

0 ⊗ |𝜓⟩
“ancillary qubit”

②We can compute 𝜓 𝑈 |𝜓⟩ by using the 2 circuits: 

⋮

⋮

⋮

⋮ Re( 𝜓 𝑈 𝜓 )

Im( 𝜓 𝑈 𝜓 )

(next slide)



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

③
1

2
0 + 1 )⊗ 𝜓 +

1

2
(|0⟩ − |1⟩) ⊗ 𝑈 𝜓

=
1

2
|0⟩ ⊗ (1 + 𝑈) 𝜓 +

1

2
|1⟩ ⊗ (1 − 𝑈) 𝜓

① ② ③

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

③
1

2
0 + 1 )⊗ 𝜓 +

1

2
(|0⟩ − |1⟩) ⊗ 𝑈 𝜓

=
1

2
|0⟩ ⊗ (1 + 𝑈) 𝜓 +

1

2
|1⟩ ⊗ (1 − 𝑈) 𝜓

𝑃0 =
1

4
(1 + 𝑈) 𝜓⟩|2 =

1

2
( 1 + Re 𝜓 𝑈 𝜓 )

① ② ③

④

𝑃1 =
1

4
(1 − 𝑈) 𝜓⟩|2 =

1

2
( 1 − Re 𝜓 𝑈 𝜓 )

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Re( 𝜓 𝑈 𝜓 ): Do nothing if |0⟩ & act 𝑈 if |1⟩

① 𝐻 0 ⊗ 𝜓 =
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝜓

②
1

2
0 ⊗ 𝜓 +

1

2
|1⟩ ⊗ 𝑈 𝜓

③
1

2
0 + 1 )⊗ 𝜓 +

1

2
(|0⟩ − |1⟩) ⊗ 𝑈 𝜓

=
1

2
|0⟩ ⊗ (1 + 𝑈) 𝜓 +

1

2
|1⟩ ⊗ (1 − 𝑈) 𝜓

𝑃0 =
1

4
(1 + 𝑈) 𝜓⟩|2 =

1

2
( 1 + Re 𝜓 𝑈 𝜓 )

① ② ③

④

𝑃1 =
1

4
(1 − 𝑈) 𝜓⟩|2 =

1

2
( 1 − Re 𝜓 𝑈 𝜓 )

Re 𝜓 𝑈 𝜓 = 𝑃0 − 𝑃1

④

⋮

⋮



“Hadamard test”: standard way to compute 𝜓 U 𝜓 (Cont’d)

Computation of Im( 𝜓 𝑈 𝜓 ):

① RZ(𝜋/2)𝐻 0 ⊗ 𝜓 =
ⅇ
−
𝜋𝑖
4

2
0 ⊗ 𝜓 +

ⅇ
+
𝜋𝑖
4

2
|1⟩ ⊗ 𝜓

②
ⅇ
−
𝜋𝑖
4

2
0 ⊗ 𝜓 +

ⅇ
+
𝜋𝑖
4

2
|1⟩ ⊗ 𝑈 𝜓

➂
ⅇ
−
𝜋𝑖
4

2
|0⟩ ⊗ (1 + 𝑖𝑈) 𝜓 +

ⅇ
−
𝜋𝑖
4

2
|1⟩ ⊗ (1 − 𝑖𝑈) 𝜓

𝑃0 =
1

4
(1 + 𝑖𝑈) 𝜓⟩|2 =

1

2
( 1 − Im 𝜓 𝑈 𝜓 )

① ② ③

④

𝑃1 =
1

4
(1 − 𝑖𝑈) 𝜓⟩|2 =

1

2
( 1 + Im 𝜓 𝑈 𝜓 )

Im 𝜓 𝑈 𝜓 = 𝑃1 − 𝑃0

④

⋮

⋮



Coming back to the Renyi entropy of Bell state

Taking 𝜓 = 𝐵 ⊗ |𝐵⟩ & 𝑈 = SWAP(1,3), we can directly compute

Real part: Imaginary part:
ancillary qubit

constructing 𝐵 ⊗ |𝐵⟩



Result of simulator (real part, 1024 shots)

Expectation: 𝑃0 − 𝑃1 = Re tr𝜌red
2 =

1

2



Result of simulator (imaginary part, 1024 shots)

𝑃1 − 𝑃0 = Im tr𝜌red
2 = 0Expectation:



Result of quantum computer (real part, 1024 shots)

Expectation: 𝑃0 − 𝑃1 = Re tr𝜌red
2 =

1

2



Result of quantum computer (imaginary part, 1024 shots)

𝑃1 − 𝑃0 = Im tr𝜌red
2 = 0Expectation:



Summary



Summary

・Quantum computation is suitable for Hamiltonian formalism
which is free from sign problem

fun & ∃many things to do even now

・Quantum error correction is important

・Instead we have to deal with huge vector space.
Quantum computers in future may do this job. 

・Real quantum computer has errors

・”Rule” of quantum computation
= Do something interesting by a combination of

acting unitary op. & measurement 



“Quantum” Moore’s law?
[from Keisuke Fujii’s slide @Deep learning and Physics 2020
https://cometscome.github.io/DLAP2020/slides/DeepLPhys_Fujii.pdf]

#(qubits)



“Quantum” Moore’s law?
[from Keisuke Fujii’s slide @Deep learning and Physics 2020
https://cometscome.github.io/DLAP2020/slides/DeepLPhys_Fujii.pdf]

Thanks!

#(qubits)



Appendix



Universality
・Any unitary gate is a combination of single qubit gates & 𝐶𝑋

(“Single qubit gates & 𝐶𝑋 are universal”)  

・Any single qubit gate is approximated by a combination of  
𝐻 & 𝑇 in arbitrary precision

・𝐻, 𝑇 & 𝐶𝑋 are universal

Ex.) Toffoli

(controlled-controlled-NOT)



Approximation of single qubit gate by 𝐻 & 𝑇
① Get a rotation with angle 2𝜋 × irrational :

② Use Weyl’s uniform distribution theorem:

③ Construct rotation around another axis:

𝑇𝐻𝑇𝐻 = 𝑒
𝑖𝜋
4 𝑅𝑛(𝜃) with  𝑅𝑛 𝜃 ≡ 𝑒−

𝑖

2
𝑛⋅𝜎

cos(𝜃/2) ≡ cos2(𝜋/8)𝑛 =
1

1 + cos2(𝜋/8)

𝑐𝑜𝑠(𝜋/8)
sin(𝜋/8)
𝑐𝑜𝑠(𝜋/8)

where

&
2𝜋 × irrational !

𝜃𝒁 is uniformly distributed mod 1 approximate 𝑅𝑛 𝛼 for ∀𝛼

𝐻𝑅𝑛 𝛼 𝐻 = 𝑅𝑚 𝛼
𝑐𝑜𝑠(𝜋/8)
−sin(𝜋/8)
𝑐𝑜𝑠(𝜋/8)

𝑚 =
1

1 + cos2(𝜋/8)
with

④ Approximate ∀single qubit gate: 𝑅𝑛 𝛼 𝑅𝑚 𝛽 𝑅𝑛 𝛾



What if we replace 𝑇 by something else?

We have the identity:

𝑇′𝐻𝑇′𝐻 = 𝑅𝑛(𝜃)

cos(𝜃/2) ≡ cos2(𝜙/2)𝑛 =
1

1 + cos2(𝜙/2)

𝑐𝑜𝑠(𝜙/2)
sin(𝜙/2)
𝑐𝑜𝑠(𝜙/2)

where

&

𝑇 = 𝑒
𝑖𝜋
8 𝑅𝑍(𝜋/4) 𝑇′ ≡ 𝑅𝑍(𝜙) ??

We can approximate any single qubit gate 

by combining 𝐻 & 𝑇′ if 𝜃/2𝜋 is irrational



[by Max Roser, Hannah Ritchie, https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png ]

Moore’s law

https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png

