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Tensor network methods
- Computational methods that have developed as a compact way to represent quantum many-body states

- It has recently attracted attention as an efficient representation of machine learning models and as 
a highly efficient compression method for big data.

MPS
Tree tensor networks

PEPS

Compression of an exponentially large vector (tensor) into product of low-rank tensors

Evolutionary Topology Search for Tensor Network Decomposition 

Table 3. Experimental�results�of�approximation�of�real�world�data.�We�compare�the�log�compression�ratio�of�GA�(ours),�TT-SVD,�TR-SVD�
under�close�RSE�value.�In�GA,�the�RSE�between�the�original�and�reconstructed�images�are�obtained�from�the�optimal�individuals�with�
their�weights�setting�to�6 and�7.�A�larger�log�compression�ratio�indicates�fewer�parameters�of�the�model�while�a�smaller�RSE�indicates�
better�approximation�quality.�

Log compression ratio (CR)" + RSE# –�CR(RSE)Images 
GA(weights=6) TT TR GA(weights=7) TT TR 

0� 0.901(0.137)� 0.582(0.142)� 0.469(0.141)� 0.660(0.115)� 0.325(0.115)� 0.457(0.127)�
1� 1.352(0.158)� 1.210(0.170)� 1.216(0.187)� 1.159(0.155)� 1.137(0.166)� 0.824(0.155)�
2� 1.452(0.176)� 1.148(0.187)� 1.231(0.206)� 1.268(0.171)� 0.898(0.179)� 1.022(0.182)�
3� 1.649(0.193)� 1.140(0.191)� 1.416(0.211)� 1.476(0.189)� 1.265(0.206)� 1.074(0.191)�
4� 0.859(0.152)� 0.527(0.156)� 0.403(0.153)� 0.621(0.121)� 0.408(0.143)� 0.372(0.141)�
5� 1.726(0.087)� 1.471(0.087)� 1.471(0.088)� 1.548(0.083)� 1.531(0.083)� 1.388(0.085)�
6� 1.332(0.110)� 1.471(0.113)� 1.212(0.124)� 1.141(0.104)� 1.088(0.101)� 1.052(0.102)�
7� 1.573(0.126)� 1.030(0.139)� 1.112(0.145)� 1.406(0.120)� 1.179(0.142)� 0.970(0.125)�
8� 1.679(0.085)� 1.493(0.082)� 1.387(0.085)� 1.505(0.081)� 1.493(0.082)� 1.357(0.084)�
9� 1.164(0.194)� 0.994(0.227)� 0.836(0.200)� 0.966(0.185)� 0.774(0.190)� 0.916(0.226)�

Figure 5. Example�to�illustrate�the�employed�images�and�their�corresponding�TN�topological�structures�obtained�by�GA.�

with�the�discovered�topology�by�GA.�

Setup.� In�the�experiment,�we�randomly�select�10�natural�
images�from�the�LIVE�dataset�(Sheikh�et�al.,�2006)�and�ap-
ply�TN�decomposition�to�the�data�approximation�task.�The�
images�have�original�sizes�of�256⇥256�and�are�tensorized�
to�order-8�of�the�size�48 .�For�topology�search,�we�spawn�a�
group�of�individuals�with�population�200�in�each�generation,�
and�set�the�maximum�number�of�generations�to�be�15.� In�
addition,�the�weight�of�each�edge�is�equal�to�4,�and�we�set�
� = 1 and�� = 1.�Other�parameters�in�GA�are�same�to�the�
ones�given�in�Sec.�4.2.�

Also�we� implement�TT-SVD�(Oseledets,�2011)� and�TR-
SVD�(Zhao�et�al.,�2016)�in�the�experiment�for�comparison.�
In�their�methods,�we�manually�adjust�the�tolerance�value�
to�meet�RSE�obtained�by�our�methods.�In�ours,�we�change�
the�weights�to�be�{6, 7} after�topology�search�to�simulate�
different�approximation�errors.�

Results.�The�experimental�results�of�compression�ratio�(CR)�
(in�log form)�with�the�corresponding�RSE�are�given�in�Table�

3.�As�shown�in�Table�3,�our�methods�result�in�less�number�of�
parameters�(higher�compression�ratio)�compared�to�TT-SVD�
and�TR-SVD�in�over�all�data�and�settings.� It�implies�that�
the�discovered�topological�structures�by�GA�can�provide�
stronger�representational�power�to�TN�decomposition�than�
the�simple�line�(TT)�and�cycle�(TR)�structures.� Figure�5�
gives�some�examples�of�the�topological�structures�obtained�
by�GA.�We�can�see�that�the�obtained�topology�shows�com-
plex�structures,�which�are�generally�a�combination�of�lines,�
cycles�and�isolated�points.�Such�results�are�expected�because�
the�natural�images�reflect�complicated�object�relationship�
and�abundant�information.�

Toy experiment shown in Figure 1.� The� experimental�
results� shown� in� Figure� 1� are� obtained� with� the� similar�
settings�as�above,�where�we�use�the�colorful�“lena”�of�the�
size�256⇥256⇥3�as�the�data�and�reshape�it�as�an�order-9�
tensor.� The�results�in�Figure�1�also�show�the�significant�
advantage�of�“new”�topological�structures�compared�to�its�
simple�counterparts.�

[Chao Li et al (AIP tensor learning team), 2020, 2022, 2023]

1

Compressing neural network by tensor network
with exponentially fewer variational parameters

Yong Qing, Peng-Fei Zhou, Ke Li, and Shi-Ju Ran

Abstract—Neural network (NN) designed for challenging ma-
chine learning tasks is in general a highly nonlinear mapping
that contains massive variational parameters. High complexity
of NN, if unbounded or unconstrained, might unpredictably
cause severe issues including over-fitting, loss of generalization
power, and unbearable cost of hardware. In this work, we
propose a general compression scheme that significantly reduces
the variational parameters of NN by encoding them to multi-
layer tensor networks (TN’s) that contain exponentially-fewer
free parameters. Superior compression performance of our
scheme is demonstrated on several widely-recognized NN’s (FC-
2, LeNet-5, and VGG-16) and datasets (MNIST and CIFAR-10),
surpassing the state-of-the-art method based on shallow tensor
networks. For instance, about 10 million parameters in the three
convolutional layers of VGG-16 are compressed in TN’s with
just 632 parameters, while the testing accuracy on CIFAR-10 is
surprisingly improved from 81.14% by the original NN to 84.36%
after compression. Our work suggests TN as an exceptionally
efficient mathematical structure for representing the variational
parameters of NN’s, which superiorly exploits the compressibility
than the simple multi-way arrays.

Index Terms—neural network, tensor network, machine learn-
ing, model compression, tensor decomposition.

I. INTRODUCTION

NEURAL network (NN) [1] has gained astounding success
in a wide range of fields including computer vision,

natural language processing, and most recently scientific in-
vestigations in, e.g., applied mathematics(e.g., [2], [3]) and
physics(e.g., [4]–[10]). To improve the performance on han-
dling complicated realistic tasks, the amount of variational
parameters in NN rapidly increases from millions to trillions
(e.g., Chat-GPT with 175 billion parameters [11]). Such
a paradigm with the utilization of super large-scale NN’s
brought us several severe challenges. Though the represen-
tation ability of NN should be enhanced by increasing the
complexity, over-fitting might occur and the generalization
ability of NN might unpredictably be harmed. The increasing
complexity also brings unbearable cost of hardware in aca-
demic investigations and practical applications.

The variational parameters in NN are usually stored as high-
order tensors (or multi-linear arrays). Previous results show
that generalization ability can be improved by suppressing or
“refining” the degrees of freedom in such tensors by, e.g.,
network pruning [12]–[14], knowledge distillation [15], [16],
weight sharing [17], [18], tensor decompositions [19], [20],
etc. In recent years, shallow tensor networks (TN’s) including

The authors are with Center for Quantum Physics and Intelligent Sciences,
Department of Physics, Capital Normal University, Beijing 10048, China.

Corresponding author: Shi-Ju Ran. Email: sjran@cnu.edu.cn

Fig. 1: (Color online) The workflow of ADTN for compressing
NN. (a) The illustration of a convolutional NN as an example,
whose variational parameters (T ) are encoded in a ADTN
shown in (b). The contraction of the ADTN results in T , in
other words, where the ADTN contains much less parameters
than T . In (c), we show the diagrammatic representation of
the unitary conditions for the tensors in ADQC.

matrix product state (MPS [21], [22], also known as tensor-
train form [23]) and matrix product operator (MPO [24])
were applied to represent the tensors in neural networks,
and achieved remarkable compression rates [25]–[29]. These
inspiring successes strongly imply the existence of efficient
mathematical structures over the simple multi-linear arrays
for representing the variational parameters of NN’s, which yet
remains elusive.

In this work, we propose to adopt multi-layer TN [30] as
an exceptionally efficient representation of variational param-
eters to fully exploit the compressibility of NN’s. Our idea
(illustrated in Fig. 1) is to encode the variational parameters
of a considered NN layer into the contraction of a TN that
contains exponentially fewer parameters. For instance, the
number of parameters of the TN encoding 2Q parameters of
NN just linearly as O(MQ), with M ⇠ O(1) the number
of TN layers. Since the contraction process is differentiable,
automatic differentiation technique [31], [32] is utilized to
obtain the tensors of the TN to reach the optimal accuracy
after compression. Thus we dub our scheme as automatically
differentiable tensor network (ADTN).

The compression performance and generality of ADTN
are demonstrated on various well-known NN’s (FC-2, LeNet-
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[Shi-Ju Ran group, arXiv:2305.06058][Stoundemire&Schwab, 2017]
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Tensor networks are e�cient representations of high-dimensional tensors which have been very
successful for physics and mathematics applications. We demonstrate how algorithms for optimizing
such networks can be adapted to supervised learning tasks by using matrix product states (tensor
trains) to parameterize models for classifying images. For the MNIST data set we obtain less than
1% test set classification error. We discuss how the tensor network form imparts additional structure
to the learned model and suggest a possible generative interpretation.

I. INTRODUCTION

The connection between machine learning and statis-
tical physics has long been appreciated [1–9], but deeper
relationships continue to be uncovered. For example,
techniques used to pre-train neural networks [8] have
more recently been interpreted in terms of the renor-
malization group [10]. In the other direction there has
been a sharp increase in applications of machine learn-
ing to chemistry, material science, and condensed matter
physics [11–19], which are sources of highly-structured
data and could be a good testing ground for machine
learning techniques.

A recent trend in both physics and machine learn-
ing is an appreciation for the power of tensor meth-
ods. In machine learning, tensor decompositions can be
used to solve non-convex optimization tasks [20, 21] and
make progress on many other important problems [22–
24], while in physics, great strides have been made in ma-
nipulating large vectors arising in quantum mechanics by
decomposing them as tensor networks [25–27]. The most
successful types of tensor networks avoid the curse of di-
mensionality by incorporating only low-order tensors, yet
accurately reproduce very high-order tensors through a
particular geometry of tensor contractions [27].

Another context where very large vectors arise is in
non-linear kernel learning, where input vectors x are
mapped into a higher dimensional space via a feature
map �(x) before being classified by a decision function

f(x) = W · �(x) . (1)

The feature vector �(x) and weight vector W can be ex-
ponentially large or even infinite. One approach to deal
with such large vectors is the well-known kernel trick,

�

FIG. 1. The matrix product state (MPS) decomposition, also
known as a tensor train. Lines represent tensor indices and
connecting two lines implies summation. For an introduction
to this graphical tensor notation see Appendix A.

which only requires working with scalar products of fea-
ture vectors, allowing these vectors to be defined only
implicitly [28].

In what follows we propose a rather di↵erent approach.
For certain learning tasks and a specific class of fea-
ture map �, we find the optimal weight vector W can
be approximated as a tensor network, that is, as a con-
tracted sequence of low-order tensors. Representing W
as a tensor network and optimizing it directly (without
passing to the dual representation) has many interest-
ing consequences. Training the model scales linearly in
the training set size; the cost for evaluating an input is
independent of training set size. Tensor networks are
also adaptive: dimensions of tensor indices internal to
the network grow and shrink during training to concen-
trate resources on the particular correlations within the
data most useful for learning. The tensor network form
of W presents opportunities to extract information hid-
den within the trained model and to accelerate training
by using techniques such as optimizing di↵erent internal
tensors in parallel [29]. Finally, the tensor network form
is an additional type of regularization beyond the choice
of feature map, and could have interesting consequences
for generalization.

One of the best understood types of tensor networks
is the matrix product state [26, 30], also known as the
tensor train decomposition [31]. Matrix product states
(MPS) have been very useful for studying quantum sys-
tems, and have recently been proposed for machine learn-
ing applications such as learning features of images [23]
and compressing the weight layers of neural networks
[24]. Though MPS are best suited for describing one-
dimensional systems, they are powerful enough to be ap-
plied to higher-dimensional systems as well.

There has been intense research into generalizations of
MPS better suited for higher dimensions and critical sys-
tems [32–34]. Though our proposed approach could gen-
eralize to these other types of tensor networks, as a proof
of principle we will only consider the MPS decomposition
in what follows. The MPS decomposition approximates
an order-N tensor by a contracted chain of N lower-order
tensors shown in Fig. 1. (Throughout we will use tensor
diagram notation; for a brief review see Appendix A.)
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(MPS) have been very useful for studying quantum sys-
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and compressing the weight layers of neural networks
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Representing the weights W of Eq. (1) as an MPS al-
lows us to e�ciently optimize these weights and adap-
tively change their number by varying W locally a few
tensors at a time, in close analogy to the density ma-
trix renormalization group algorithm used in physics
[26, 35]. Similar alternating least squares methods for
tensor trains have also been explored in applied mathe-
matics [36].

This paper is organized as follows: we propose our gen-
eral approach then describe an algorithm for optimizing
the weight vector W in MPS form. We test our approach,
both on the MNIST handwritten digit set and on two-
dimensional toy data to better understand the role of the
local feature-space dimension d. Finally, we discuss the
class of functions realized by our proposed models as well
as a possible generative interpretation.

Those wishing to reproduce our results can find
sample codes based on the ITensor library [37] at:
https://github.com/emstoudenmire/TNML

II. ENCODING INPUT DATA

The most successful use of tensor networks in physics
so far has been in quantum mechanics, where combining
N independent systems corresponds to taking the tensor
product of their individual state vectors. With the goal
of applying similar tensor networks to machine learning,
we choose a feature map of the form

�s1s2···sN (x) = �s1(x1) ⌦ �s2(x2) ⌦ · · · �sN (xN ) . (2)

The tensor �s1s2···sN is the tensor product of the same
local feature map �sj (xj) applied to each input xj , where
the indices sj run from 1 to d; the value d is known as
the local dimension. Thus each xj is mapped to a d-
dimensional vector, which we require to have unit norm;
this implies each �(x) also has unit norm.

The full feature map �(x) can be viewed as a vector
in a dN -dimensional space or as an order-N tensor. The
tensor diagram for �(x) is shown in Fig. 2. This type of
tensor is said be rank-1 since it is manifestly the prod-
uct of N order-1 tensors. In physics terms, �(x) has the
same structure as a product state or unentangled wave-
function.

For a concrete example of this type of feature map,
consider inputs which are grayscale images with N pixels,
where each pixel value ranges from 0.0 for white to 1.0
for black. If the grayscale pixel value of the jth pixel
is xj 2 [0, 1], a simple choice for the local feature map
�sj (xj) is

�sj (xj) =
h
cos

⇣⇡

2
xj

⌘
, sin

⇣⇡

2
xj

⌘i
(3)

and is illustrated in Fig. 3. The full image is represented
as a tensor product of these local vectors. From a physics
perspective, �sj is the normalized wavefunction of a sin-
gle qubit where the “up” state corresponds to a white

s1 s2 s3 s4 s5 s6

=
�s1 �s2 �s3 �s4 �s5 �s6

�

FIG. 2. Input data is mapped to a normalized order N tensor
with a trivial (rank 1) product structure.

FIG. 3. For the case of a grayscale image and d = 2, each
pixel value is mapped to a normalized two-component vector.
The full image is mapped to the tensor product of all the local
pixel vectors as shown in Fig. 2.

pixel, the “down” state to a black pixel, and a superpo-
sition corresponds to a gray pixel.

While our choice of feature map �(x) was originally
motivated from a physics perspective, in machine learn-
ing terms, the feature map Eq. (2) defines a kernel which
is the product of N local kernels, one for each compo-
nent xj of the input data. Kernels of this type have been
discussed previously [38, p. 193] and have been argued
to be useful for data where no relationship is assumed
between di↵erent components of the input vector prior
to learning [39].

Though we will use only the local feature map Eq. (3)
in our MNIST experiment below, it would be interesting
to try other local maps and to understand better the role
they play in the performance of the model and the cost
of optimizing the model.

III. MULTIPLE LABEL CLASSIFICATION

In what follows we are interested in multi-class learn-
ing, for which we choose a “one-versus-all” strategy,
which we take to mean generalizing the decision func-
tion Eq. (4) to a set of functions indexed by a label `

f `(x) = W ` · �(x) (4)

and classifying an input x by choosing the label ` for
which |f `(x)| is largest.

Since we apply the same feature map � to all input
data, the only quantity that depends on the label ` is
the weight vector W `. Though one can view W ` as a
collection of vectors labeled by `, we will prefer to view
W ` as an order N +1 tensor where ` is a tensor index and



Near-term quantum devices

• Noisy intermediate-scale quantum (NISQ) era


‣ A few  qubits without error correction


‣ A few  depths circuit evolution
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Near-term aim: achieve useful quantum advantage on NISQ devices



Quantum computing and tensor network methods

1. Tensor network as a simulator for quantum computing

Main uses of tensor network methods for research of quantum computing

2. Development of useful algorithm based on the tensor network

- Construct a circuit for state preparation based on the tensor network states

- Circuit optimization/compilation by decomposing the large unitary operator into a product of small unitary operator

- Exact contraction of quantum circuit (similar to the state-vector simulator)

- Simulators using tensor network method to approximate quantum states after gate operations
Today’s topic: tensor network simulator

Find quantum circuit  s.t.Ĉ = ÛMÛM−1⋯Û1 |0⟩ |Ψ⟩ ∼ ÛMÛM−1⋯Û1 |0⟩

Find optimal product of  s.t. ÛMÛM−1⋯Û1 Ĉ ∼ ÛMÛM−1⋯Û1

- Error mitigation utilizing the compression performance of tensor networks

⟨0 | Ĉ†ÔĈ |0⟩ = Tr[ÛM⋯Û2Û1 |0⟩⟨0 | Û†
1Û

†
2⋯Û†

MÔ] Compute all contractions as products of tensors

[Nation et al., PRX Quantum 2, 040326 (2021)]



Tensor network simulators

(1) To check the validity of the quantum algorithm assuming that the quantum computer has worked correctly. 

(2) To verify that the quantum computer is working properly

(3) To bridge the classical information and quantum information

Current quantum computing devices are noisy and have no error correction, so they must be evaluated against correct operation.

In order to explore the useful applications of quantum computers, it is necessary to check the results of quantum computers when they work properly.

The simulator is useful in converting data for a single task in a joint effort between a quantum computer and a classical computer.

Why we need the simulator of quantum computer?

State vector simulator Tensor network simulator

Hard limitation on number of qubits Limitation on entanglements

χ χ
virtual bond

PEPS

Can compute any quantum circuits Can compute quantum circuits with large qubits

MPS



Tensor network simulators

SC ’21, November 14–19, 2021, St. Louis, MO, USA Yong (Alexander) Liu et al.

A recent work [27] propose a parallel algorithm for the con-
traction of tensor networks using probabilistic graphical models.
Another recent work [12] present a tensor network states based
algorithm speci!cally designed to compute amplitudes for random
quantum circuits with arbitrary geometry.

The latest work [21] achieves a computational complexity that
is much lower than both the Google simulation in the “Quantum
Supremacy” statement [1] and the Alibaba work [14], by using a
subspace sampling technique instead of random sampling in the full
Hilbert space. Using 60 GPUs, the proposed method could already
compute exact amplitudes of 2 million correlated bitstrings in 5
days.

4.4 Summary
Fig. 2 shows a general picture about the development of all dif-
ferent classical simulation methods over the years. As the time
complexity is very implementation-speci!c, we put the space com-
plexity (corresponding to the total memory size) as a major metric
to demonstrate the evolution of di"erent types of methods.

The state vector type of methods follow a strict pattern of an
! (2!) space complexity for an "-qubit system, shown as the green
dotted line (examples such as [6, 13] sit exactly on the line). Various
techniques were proposed to divert slightly from the line, such as
the compression method in [33], the encoding method in [26], or
customization for a speci!c circuit in [18]. Even with the diversion
provided by di"erent techniques, the steep slope would soon touch

the upperbound of Fugaku [7], the supercomputer with the largest
memory space on the current top500 list.

In contrast to the state vector type of methods, the tensor con-
traction methods can signi!cantly reduce the required memory
space[14, 29, 30]. Especially the slicing method (discussed in more
details in Section 6.1) would reduce the required memory space
from PB to TB or even GB scale. As a result, most of recent e"orts[5,
14, 21, 29, 30] use such a strategy to !t the tensor contraction com-
putation into a single node, and scale the performance in a highly-
e#cient way by allocating di"erent tensors to di"erent computing
nodes.

Our simulation also takes the tensor-based approach. In con-
trast to the other tensor methods, we apply a heuristic method to
identify the most suitable slicing scheme, as well as the resulting
contraction order. By adopting such strategies on the new Sunway
supercomputer, we can simulate complex RQCs with 10×10 (with a
depth of (1+40+1)) or even 20× 20 qubits (with a depth of (1+16+1)).
As far as we know, this is the largest quantum circuit that gets
simulated on a classical supercomputer.

Compared with the Google Sycamore system [1], which declared
the “Quantum Supremacy” in 2019 with one million samples gener-
ated in 200 seconds with a !delity of 0.2%, our simulator can provide
similar samples within seconds instead of years, thus capable of
providing real-time simulation for current quantum systems.

 
Our work

Figure 2: A summary of major classical RQC simulations. The x-axis denotes the number of qubits, while the y-axis shows the
corresponding memory space required. The size of the circle/rectangular corresponds to the complexity (depth) of the circuit.
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quantum processor time is only about 30 seconds. The bitstring samples 
from all circuits have been archived online (see ‘Data availability’ section) 
to encourage development and testing of more advanced verification 
algorithms.

One may wonder to what extent algorithmic innovation can enhance 
classical simulations. Our assumption, based on insights from complex-
ity theory11–13, is that the cost of this algorithmic task is exponential in 
circuit size. Indeed, simulation methods have improved steadily over the 
past few years42–50. We expect that lower simulation costs than reported 
here will eventually be achieved, but we also expect that they will be 
consistently outpaced by hardware improvements on larger quantum 
processors.

Verifying the digital error model
A key assumption underlying the theory of quantum error correction 
is that quantum state errors may be considered digitized and local-
ized38,51. Under such a digital model, all errors in the evolving quantum 
state may be characterized by a set of localized Pauli errors (bit-flips or 
phase-flips) interspersed into the circuit. Since continuous amplitudes 
are fundamental to quantum mechanics, it needs to be tested whether 
errors in a quantum system could be treated as discrete and probabil-
istic. Indeed, our experimental observations support the validity of 
this model for our processor. Our system fidelity is well predicted by a 
simple model in which the individually characterized fidelities of each 
gate are multiplied together (Fig. 4).

To be successfully described by a digitized error model, a system 
should be low in correlated errors. We achieve this in our experiment by 

choosing circuits that randomize and decorrelate errors, by optimizing 
control to minimize systematic errors and leakage, and by designing 
gates that operate much faster than correlated noise sources, such as 
1/f flux noise37. Demonstrating a predictive uncorrelated error model 
up to a Hilbert space of size 253 shows that we can build a system where 
quantum resources, such as entanglement, are not prohibitively fragile.

The future
Quantum processors based on superconducting qubits can now perform 
computations in a Hilbert space of dimension 253 ≈ 9 × 1015, beyond the 
reach of the fastest classical supercomputers available today. To our 
knowledge, this experiment marks the first computation that can be 
performed only on a quantum processor. Quantum processors have 
thus reached the regime of quantum supremacy. We expect that their 
computational power will continue to grow at a double-exponential 
rate: the classical cost of simulating a quantum circuit increases expo-
nentially with computational volume, and hardware improvements will 
probably follow a quantum-processor equivalent of Moore’s law52,53, 
doubling this computational volume every few years. To sustain the 
double-exponential growth rate and to eventually offer the computa-
tional volume needed to run well known quantum algorithms, such as 
the Shor or Grover algorithms25,54, the engineering of quantum error 
correction will need to become a focus of attention.

The extended Church–Turing thesis formulated by Bernstein and 
Vazirani55 asserts that any ‘reasonable’ model of computation can be 
efficiently simulated by a Turing machine. Our experiment suggests 
that a model of computation may now be available that violates this 
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Fig. 4 | Demonstrating quantum supremacy. a, Verification of benchmarking 
methods. FXEB values for patch, elided and full verification circuits are 
calculated from measured bitstrings and the corresponding probabilities 
predicted by classical simulation. Here, the two-qubit gates are applied in a 
simplifiable tiling and sequence such that the full circuits can be simulated out 
to n = 53, m = 14 in a reasonable amount of time. Each data point is an average over 
ten distinct quantum circuit instances that differ in their single-qubit gates (for n 
= 39, 42 and 43 only two instances were simulated). For each n, each instance is 
sampled with Ns of 0.5–2.5 million. The black line shows the predicted FXEB based 
on single- and two-qubit gate and measurement errors. The close 
correspondence between all four curves, despite their vast differences in 

complexity, justifies the use of elided circuits to estimate fidelity in the 
supremacy regime. b, Estimating FXEB in the quantum supremacy regime. Here, 
the two-qubit gates are applied in a non-simplifiable tiling and sequence for 
which it is much harder to simulate. For the largest elided data (n = 53, m = 20, 
total Ns = 30 million), we find an average FXEB > 0.1% with 5σ confidence, where σ 
includes both systematic and statistical uncertainties. The corresponding full 
circuit data, not simulated but archived, is expected to show similarly 
statistically significant fidelity. For m = 20, obtaining a million samples on the 
quantum processor takes 200 seconds, whereas an equal-fidelity classical 
sampling would take 10,000 years on a million cores, and verifying the fidelity 
would take millions of years.

Performance comparison with real quantum devices
[Google, Nature 574, 505-510 (2019)]

the fidelity for the noisy gates which reduces the overall
gain. For χ ¼ 320 and the ½4; 2; 2; 4# partition where the
final fidelity is slightly better than F ¼ 0.002 (see Fig. 13),
the memory footprint of the calculation is 4.5 GB of
memory, which represents only 1.5 × 10−6% of the size of
the total Hilbert space spanned by the 254 qubits.

C. Split-and-merge algorithm for more complex gates

We end this article with results in a configuration that
closely matches the one of Ref. [4]. The 1-qubit gates are
chosen at random between

ffiffiffiffi
X

p
,

ffiffiffiffi
Y

p
, and

ffiffiffiffiffi
W

p
while the

2-qubit gate iSθ is a combination of iSWAP followed by a
controlled rotation along the z axis:

iSθ ¼

0

BBB@

1 0 0 0

0 0 −i 0

0 −i 0 0

0 0 0 e−iθ

1

CCCA: ð36Þ

This gate has four different singular values and is therefore
expected to produce more entanglement than the CZ gate.
The link between number of singular values and the actual
growth of entanglement is not totally straightforward,
however. Indeed, the pure iSWAP gate has four different
singular values &1 and &i, yet as it preserves the structure
of product states, it is trivial to simulate with perfect
fidelity. In what follows, we use θ ¼ 1, which is nontrivial
to simulate.
The algorithm of the previous section behaves rather

poorly for the iSθ gate. For instance, for χ ¼ 128, and the
½4; 2; 2; 4# grouping, the 2-qubit gate fidelity drops from
f ≈ 98% (CZ) to f ≈ 92% (iSθ). However, a simple
modification of the algorithm allows one to recover a
much higher fidelity, f ≈ 95%.
To study iSθ, we therefore switch to a “split-and-merge”

strategy: instead of “extracting” qubits one by one to
perform 2-qubit gates as in Sec. VI A, we extract one full
column of qubits at a time. In the split-and-merge strategy,
we use two different groupings of the qubits, for instance,
switching between the ½4; 2; 2; 4# grouping and the ½5; 2; 5#
grouping (hereafter referred to as the ½4; 2; 2; 4# ↔ ½5; 2; 5#
grouping strategy). Switching from one grouping to another
induces truncation errors. However, once the switching has
been done, many 2-qubit gates can be performed exactly. A
schematic of the split-and-merge strategy is shown in
Fig. 14 for the ½4; 2; 2; 4# ↔ ½5; 2; 5# case.

(c)

(a)

(b)

FIG. 12. (a) Sketch of the quantum circuit with 54 qubits in a
2D grid. The qubits are represented by the black dots while the
2-qubit gates by the color links. (b) The circuit alternates 1-qubit
gates (black dots) with 2-qubit gates (here the control-Z gate).
The depth D counts the number of 2-qubit gates per qubit.
(c) Different grouping strategies for the group MPS algorithm.
½112# corresponds to a grouping in 12 blocks counting 1 column
each; ½4; 2; 2; 4# corresponds to a grouping in 4 blocks counting,
respectively, 4, 2, 2, and 4 columns.

FIG. 13. Residual error per gate ϵav ¼ 1 − fav as a function of
the bond dimension χ for the 2D circuit of Fig. 12 for a depth
D ¼ 20. The different curves correspond to different groupings.
The horizontal dashed line corresponds to the error rate asso-
ciated with a global fidelity F ¼ 0.002.
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Figure 15 shows our numerical results for ϵav versus χ.
The curves are very similar to those obtained for CZ at
similar computational cost, but with an error rate roughly 3
times larger than with CZ.
To conclude this section, we have shown that for the

control-Z gate a simple grouping strategy allows one
to reach the same fidelity as the Google experiment [4]
in a matter of hours on a single core computer (i.e.,
fav ≥ 98.6%). For the more challenging iSθ gate, this
fidelity drops down to 95% for similar computing time.
A natural question that arises is whether these algorithms

may be used to defeat the claim of quantum supremacy put
forward in Ref. [4], i.e., raise the fidelity from 95% to
> 98%. We have not be able to do so on a single core
implementation. However, the split-and-merge algorithm is
to a large extent trivially parallelizable since most tensor
operations contain “spectator” indices whose different
values can be fixed, and the resulting tensor “slices”
dispatched to different computing cores or nodes.

Extrapolations from our results suggest that such a parallel
implementation should be able to reach fidelities in the
98%–99% range with a few hundred cores and a few
terabytes of memory. However, such a calculation has
not be attempted at the moment. Let us note, in any case,
that not too much emphasis should be put on quantum
supremacy by itself. It is not because a task is difficult to
simulate that it provides a useful output. Also, there is no
question that quantum many-body problems are extremely
difficult to simulate. The insight that we get from the
present work is an estimate of the relation between the
accuracy reached in the quantum state and the underlying
amount of entanglement that could potentially be exploited.

VII. DISCUSSION

In this work, we have discussed a practical algorithm that
allows us to simulate a quantum computer in a time which
grows linearly with the number of qubitsN and the depthD
at the cost of having a finite fidelity f per 2-qubit operation.
Hence, although we do not aim at describing the actual
errors and decoherence mechanisms present in real quan-
tum computers, our algorithm provides quantum states
of the same quality provided that the effective fidelity f is
as high as the experimental one. The fidelity f can be
increased at a polynomial cost up to a finite value f∞;
increasing it further has an exponential cost in the fidelity.
Our main observation is that fidelities of the order of 99%,
which are typical fidelities found in state-of-the-art experi-
ments, can be reproduced at a moderate computational cost.
Is a fidelity of 99% large or small? From an experimental

physics perspective, it is certainly quite an achievement to
keep several dozen qubits at this level of fidelity. From a
quantum information and classical algorithms point of
view, a question is, what is the level of entanglement—
hence the actual fraction of the Hilbert space that can truly
been accessed—associated with this level of fidelity? Our
MPS ansatz can provide an estimate (or at least an upper
bound for one may come up with better algorithms) for this
fraction. Since the MPS ansatz only spans a very tiny
fraction of the overall Hilbert space, it follows that the
computational power associated with fidelities in the 99%
range is much more limited than the full size 2N of the
Hilbert space would suggest. We conclude that increasing
the computational power of a quantum computer will
primarily require increasing the fidelity with which the
different operations are performed [25]. Increasing the
number of qubits will remain ineffective until better
fidelities have been reached.
A second factor of primary importance is qubit con-

nectivity: Long-range connections mean that entanglement
over much larger distances can be built before decoherence
steps in. Architectures that try to improve the connectivity
with, e.g., quantum buses [26] could be a very effectiveway
to make the system harder to simulate, hence increase its
potential computing power. We have indeed observed that

FIG. 14. Schematic of the split-and-merge algorithm for the
½4; 2; 2; 4" ↔ ½5; 2; 5". The 2-qubit gates shown in red and dark
green are performed in the ½4; 2; 2; 4" configuration and one
switches to the ½5; 2; 5" to perform the light green and
purple gates.

FIG. 15. Residual error per gate ϵav ¼ 1 − fav as a function
of the bond dimension χ for the iSθ gate for a 2D circuit with
N ¼ 54 qubits and a depth D ¼ 20. The different curves
correspond to different groupings. The horizontal dashed line
corresponds to the error rate associated with a global fidelity
F ¼ 0.002. The orange line is just a guide to the eye.
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the fidelity for the noisy gates which reduces the overall
gain. For χ ¼ 320 and the ½4; 2; 2; 4# partition where the
final fidelity is slightly better than F ¼ 0.002 (see Fig. 13),
the memory footprint of the calculation is 4.5 GB of
memory, which represents only 1.5 × 10−6% of the size of
the total Hilbert space spanned by the 254 qubits.

C. Split-and-merge algorithm for more complex gates

We end this article with results in a configuration that
closely matches the one of Ref. [4]. The 1-qubit gates are
chosen at random between
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This gate has four different singular values and is therefore
expected to produce more entanglement than the CZ gate.
The link between number of singular values and the actual
growth of entanglement is not totally straightforward,
however. Indeed, the pure iSWAP gate has four different
singular values &1 and &i, yet as it preserves the structure
of product states, it is trivial to simulate with perfect
fidelity. In what follows, we use θ ¼ 1, which is nontrivial
to simulate.
The algorithm of the previous section behaves rather

poorly for the iSθ gate. For instance, for χ ¼ 128, and the
½4; 2; 2; 4# grouping, the 2-qubit gate fidelity drops from
f ≈ 98% (CZ) to f ≈ 92% (iSθ). However, a simple
modification of the algorithm allows one to recover a
much higher fidelity, f ≈ 95%.
To study iSθ, we therefore switch to a “split-and-merge”

strategy: instead of “extracting” qubits one by one to
perform 2-qubit gates as in Sec. VI A, we extract one full
column of qubits at a time. In the split-and-merge strategy,
we use two different groupings of the qubits, for instance,
switching between the ½4; 2; 2; 4# grouping and the ½5; 2; 5#
grouping (hereafter referred to as the ½4; 2; 2; 4# ↔ ½5; 2; 5#
grouping strategy). Switching from one grouping to another
induces truncation errors. However, once the switching has
been done, many 2-qubit gates can be performed exactly. A
schematic of the split-and-merge strategy is shown in
Fig. 14 for the ½4; 2; 2; 4# ↔ ½5; 2; 5# case.
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FIG. 12. (a) Sketch of the quantum circuit with 54 qubits in a
2D grid. The qubits are represented by the black dots while the
2-qubit gates by the color links. (b) The circuit alternates 1-qubit
gates (black dots) with 2-qubit gates (here the control-Z gate).
The depth D counts the number of 2-qubit gates per qubit.
(c) Different grouping strategies for the group MPS algorithm.
½112# corresponds to a grouping in 12 blocks counting 1 column
each; ½4; 2; 2; 4# corresponds to a grouping in 4 blocks counting,
respectively, 4, 2, 2, and 4 columns.

FIG. 13. Residual error per gate ϵav ¼ 1 − fav as a function of
the bond dimension χ for the 2D circuit of Fig. 12 for a depth
D ¼ 20. The different curves correspond to different groupings.
The horizontal dashed line corresponds to the error rate asso-
ciated with a global fidelity F ¼ 0.002.
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in the strongly entangling regime of interest. Although χ = 2,048 was 
sufficient for exact simulation of the weight-17 operator in Fig. 3c, an 
MPS bond dimension of 32,768 would be needed for exact simulation 
of this modified circuit and operator with θh = π/2.

As a final example, we extend the circuit depth to 20 Trotter steps 
(60 CNOT layers) and estimate the θh dependence of a weight-1 observ-
able, $Z62%, in Fig. 4b, in which the causal cone extends over the entire 
device. Given the non-uniformity of device performance, also seen in 
the spread of single-site observables in Fig. 2b, we choose an observ-
able that obtains the expected result $Z62% ≈ 1 at the verifiable θh = 0 
point. Despite the greater depth, the MPS simulations of the LCDR 
circuit agree well with the experiment in the weakly entangling regime 
of small θh. Although deviations from the experimental trace emerge 
with increasing θh, we note that the MPS simulations slowly move in 
the direction of the experimental data with increasing χ (see Supple-
mentary Information X) and that the bond dimension needed to exactly 
represent the stabilizer state and its evolution to depth 20 at θh = π/2 
is 7.2 × 1016, 13 orders of magnitude larger than what we considered (see 
Supplementary Information VIII). For reference, as the memory 
required to store an MPS scales as χ( )2O , already a bond dimension of 
χ = 1 × 108 would require 400 PB, independent of any runtime consid-
erations. Furthermore, full-state tensor network simulations are already 
unable to capture the dynamics at the exactly verifiable five-step circuit 
in Fig. 3a. We also note that, given the large unmitigated signal, there 
may be opportunity to study time evolution at even larger depths on 
the current device.

For execution times, the tensor network simulations in Fig. 4 were run 
on a 64-core, 2.45-GHz processor with 128 GB of memory, in which the 
run time to access an individual data point at fixed θh was 8 h for Fig. 4a 
and 30 h for Fig. 4b. The corresponding quantum wall-clock run time 
was approximately 4 h for Fig. 4a and 9.5 h for Fig. 4b, but this is also 
far from a fundamental limit, being at present dominated by classical 
processing delays that stand to be largely eliminated through concep-
tually straightforward optimizations. Indeed, the estimated device 
run time for the error-mitigated expectation values using 614,400 
samples (2,400 circuit instances for each gain factor and readout error 

mitigation, with 64 shots per instance) at a conservative sampling 
rate of 2 kHz is only 5 min 7 s, which can be even further reduced by 
optimization of qubit reset speeds. On the other hand, the classical 
simulations may also be improved by methods besides the pure-state 
tensor networks considered here, such as Heisenberg operator evolu-
tion methods, which have recently been applied to non-Clifford simu-
lations38. Another approach is to numerically emulate the ZNE used 
experimentally. For example, it was recently argued that the finite-χ 
truncation error introduced by tensor-product compression mim-
ics experimental gate errors34. It would thus be natural to develop a 
theory for extrapolating tensor network state expectation values in 
the bond dimension χ for time evolution, as has been done in the case 
of ground-state search39. Alternatively, one can more directly emulate 
ZNE by introducing artificial dissipation into the dynamics engineered 
so that the resulting mixed-state evolution has reduced tensor-product 
bond dimension, as—for example—in dissipation-assisted operator 
evolution40, and extrapolate results with respect to the strength of the 
dissipation. Although such methods40,41 can successfully capture the 
long-time dynamics of the low-weight observables of a 1D spin chain, 
their applicability to high-weight observables in 2D at intermediate 
times is not clear—particularly as these methods are explicitly con-
structed to truncate complex operators.

The observation that a noisy quantum processor, even before 
the advent of fault-tolerant quantum computing, produces reliable 
expectation values at a scale beyond 100 qubits and non-trivial circuit 
depth leads to the conclusion that there is indeed merit to pursuing 
research towards deriving a practical computational advantage from 
noise-limited quantum circuits. Over recent years, substantial research 
effort has been directed to develop and demonstrate candidate heuris-
tic quantum algorithms5 that use noise-limited quantum circuits to esti-
mate expectation values. We have now reached reliability at a scale for 
which one will be able to verify proposals and explore new approaches 
to determine which can provide utility beyond classical approxima-
tion methods. At the same time, these results will motivate and help 
advance classical approximation methods as both approaches serve 
as valuable benchmarks of one another. However, even with improved 
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Fig. 4 | Estimating expectation values beyond exact verification. Plot 
markers, confidence intervals and causal light cones appear as defined in Fig. 3. 
a, Estimates of a weight-17 observable (panel title) after five Trotter steps for 
several values of θh. The circuit is similar to that in Fig. 3c but with further 
single-qubit rotations at the end. This effectively simulates the time evolution 
of the spins after Trotter step six by using the same number of two-qubit gates 
used for Trotter step five. As in Fig. 3c, the observable is a stabilizer at θh = π/2 
with eigenvalue −1, so we negate the y axis for visual simplicity. Optimization of 
the MPS simulation by including only qubits and gates in the causal light cone 

enables a higher bond dimension (χ = 3,072), but the simulation still fails to 
approach −1 (+1 in negated y axis) at θh = π/2. b, Estimates of the single-site 
magnetization 〈Z62〉 after 20 Trotter steps for several values of θh. The MPS 
simulation is light-cone-optimized and performed with bond dimension 
χ = 1,024, whereas the isoTNS simulation (χ = 12) includes the gates outside  
the light cone. The experiments were carried out with G = 1, 1.3, 1.6 for a and 
G = 1, 1.2, 1.6 for b, and extrapolated as in Supplementary Information II.B.  
For each G, we generated 2,000–3,200 random circuit instances for a and 
1,700–2,400 instances for b.

[IBM, Nature 618, 500 (2023)]

Real-device experiment 
for random circuits

Real-device experiment 
for quench dynamics

Tensor network simulation

6

FIG. 4. Comparison for deeper circuits of our BP-approximated tensor network state approach to simulating the
dynamics of the kicked transverse field Ising model on the heavy-hex lattice versus the Eagle quantum processor and
alternative tensor network methods. Expectation values calculated following a number of Trotter steps of the dynamics
of the model — see Eq. (1) — are plotted. a) Weight-17 stabilizer after 6 steps of evolution. Here exact data is
now available [15] and our BP data for � = 500 is within 10�4 of the exact result for all ✓h. b) Weight-1 observable
after 20 steps. The shaded region shows the di↵erence between our finite � = 500 bond dimension data and the
data extrapolated to infinite bond dimension, where we believe the true answer lies. c) Top and bottom plots show
observables in b) at ✓h = 0.7 and ✓h = 1.0 respectively as a function of inverse bond dimension of the TNS. Red
dashed lines represent a least squares fit of the form A + B/� taken on the data, and we take A to be the predicted
value of the observable in the limit � ! 1. Even in the limit � ! 1 there will generally be some deviation from the
exact result due to the BP approximation that we use for evolving the state and computing expectation values (see
the Methods section). Our analysis of the errors due to BP for this system, however, suggest this deviation is likely
to be very small. d-f) Dynamics of hZ62i using the BP-approximated TNS approach versus a MPS approach (with
bond dimension 2500) with light cone depth reduction (pink) for ✓h = 0.6, 0.8 and 1.0 respectively. Results from other
methods at depth 20 are shown as black circles (Eagle processor [10]), blue circles (truncated Pauli strings [17, 18]),
purple diamonds (TNO [15]) and orange pentagons (MPO [16]). Inset shows average gate error from the MPS approach
(pink circles) and absolute di↵erence between the BP-approximated TNS and the MPS result (solid grey line).

the tensor network in the Vidal gauge [23, 24]. This gauge corresponds to the choice of positive, diagonal
bond tensors ⇤e residing on the edges of the network and the on-site tensors �v of the network obeying
certain isometric properties (see Eqs. (5) and (6)). These isometric properties are important for maintaining
accuracy during the evolution of the network. We use | (✓h, n)i to denote the TNS of the system after n � 1
applications of U(✓h), i.e.

| (✓h, n)i =

 
nY

i=1

U(✓h)

!
| (0)i = U

n(✓h)| (0)i, (3)

where | (0)i is the initial state of the system. We use the same initial state as in Ref. [10]: | (0)i =
| "" . . . "i. The single-site X rotations in U(✓h) can be applied to | (✓h, n)i exactly and the two-site gates
are applied approximately using the simple update [23] procedure (see the Methods section), which involves
truncating the internal indices of the TNS to keep them less than or equal to a prescribed maximum bond
dimension �. Following a single Trotter step, the tensor network is regauged using belief propagation, a well
established statistical inference algorithm which can be formulated for tensor networks [12] which we find
improves the accuracy of the simple update procedure [14, 25]. Regauging before applying each gate with
simple update would be most accurate and would be equivalent to performing each gate application with

[Tindall et al., arXiv:2306.14887]

Tensor network simulation
(using Belief propagation technique)

No one knows the limit of performance.



Outline
- Matrix product state

- Canonical form and gauging form

- Measurement and applying operator to state

- Time-evolving block decimation (TEBD) and its parallelization

- Extension to 2D tensor network (on-going project)

- Relation between tensor network and quantum circuit
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Graphical representations of tensors

Rank 0 tensor (scaler)

Rank 1 tensor (vector)

Rank 2 tensor (matrix)

Tensors

Rank 3 tensor

Rank 4 tensor

Contraction

= vu = ∑
i

viui =

= Au = ∑
j

Aijuj =

= AB = ∑
j

AijBjk =

We call each line “bond”.

c

ui

Aij

Tijk

Tijkl



Analytical decomposition

SVD=

A U D V

SVD=

A U D V

QR=

A Q R

Singular value decomposition (SVD) QR decomposition

QR=

A Q R

Henceforth, a diagonal matrix tensor is 
represented using a diamond-shaped symbol.

QR decomposition is not used for bond 
truncation, but is useful for extracting 
associated low-rank tensors.

SVD

SVD

QR

QR



1D tensor network state 
(Matrix Product State, MPS)



Tensor representation of quantum states
A quantum state (wave function) defined on a lattice :𝕃 = {0,1,⋯, L − 1}

|Ψ⟩ =
d−1

∑
σ0=0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

Ψσ0σ1⋯σL−1
|σ0⟩ |σ1⟩⋯ |σL−1⟩

The coefficients for each basis can be viewed as elements of a tensor.

σ0 σ1 σ2 ⋯ σL−1

 denotes labels of sites on a lattice.𝕃

 ( ) denotes the local 
eigenstate on a site .
|σl⟩ σl = [0,d)

l

⋯
We call the subscripts 
corresponding to the basis of the 
physical system “physical bonds.”



Matrix product states (MPS)
|Ψ⟩ =

d−1

∑
σ0=0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

Ψσ0σ1⋯σL−1
|σ0⟩ |σ1⟩⋯ |σL−1⟩

|Ψ⟩ =
d−1

∑
σ0=0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

Mσ0
Mσ1

⋯MσL−1
|σ0⟩ |σ1⟩⋯ |σL−1⟩MPS

Quantum state

physical bonds

virtual bonds



Generality of MPS and “truncation”

|Ψ⟩ =
d−1

∑
σ0=0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

Ψσ0σ1⋯σL−1
|σ0⟩ |σ1⟩⋯ |σL−1⟩

Generality of MPS: Any quantum state can be expressed as a MPS form.



Generality of MPS

SVD

|Ψ⟩ =
d−1

∑
σ0=0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

Ψ(σ0)(σ1⋯σL−1) |σ0⟩ |σ1⟩⋯ |σL−1⟩

row column



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

D(0)
α0α0

V(0)
α0(σ1⋯σL−1)

|σ0⟩ |σ1⟩⋯ |σL−1⟩



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

Ψ(1)
(α0σ1)(σ2⋯σL−1)

|σ0⟩ |σ1⟩⋯ |σL−1⟩

SVD
row column



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

D(1)
α1α1

V(1)
α1(σ1⋯σL−1)

|σ0⟩ |σ1⟩⋯ |σL−1⟩



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

Ψ(2)
(α1σ2)(σ3⋯σL−1)

|σ0⟩ |σ1⟩⋯ |σL−1⟩

SVD
row column



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

U(2)
α1σ2α2

Dα2α2
V(2)

α2(σ3⋯σL−1)
|σ0⟩ |σ1⟩⋯ |σL−1⟩



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

U(2)
α1σ2α2

Ψ(3)
(α2σ3)(σ4⋯σL−1)

|σ0⟩ |σ1⟩⋯ |σL−1⟩

SVD
row column



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

U(2)
α1σ2α2

U(3)
α2σ3α3

Dα3α3
V(3)

α3(σ4⋯σL−1)
|σ0⟩ |σ1⟩⋯ |σL−1⟩



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

U(2)
α1σ2α2

U(3)
α2σ3α3

Ψ(4)
(α3σ4)(σ5⋯σL−1)

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR
row column



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(4)
α3σ4α4

Ψ(5)
(α4σ5)(σ6⋯σL−1)

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(5)
α4σ5α5

Ψ(6)
α5σ6σ7⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(6)
α5σ6α6

Ψ(7)
α6σ7σ8⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(7)
α6σ7α7

Ψ(8)
α7σ8σ9⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(l−1)
αl−2σl−1αl−1

Ψ(l)
αl−1σlσl+1⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(l−1)
αl−2σl−1αl−1

Ψ(l)
αl−1σlσl+1⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(l−1)
αl−2σl−1αl−1

Ψ(l)
αl−1σlσl+1⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(l−1)
αl−2σl−1αl−1

Ψ(l)
αl−1σlσl+1⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(l−1)
αl−2σl−1αl−1

Ψ(l)
αl−1σlσl+1⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(l−1)
αl−2σl−1αl−1

Ψ(l)
αl−1σlσl+1⋯σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(L−3)
αL−4σL−3αL−3

Ψ(L−2)
αL−3σL−2σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

QR



Generality of MPS

|Ψ⟩ =
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(L−3)
αL−4σL−3αL−3

Ψ(L−2)
αL−3σL−2σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩



Generality of MPS

=
d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(L−3)
αL−4σL−3αL−3

U(L−2)
αL−3σL−2αL−2

Ψ(L−1)
αL−2σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

|Ψ⟩ =
d−1

∑
σ0=0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

Ψσ0σ1⋯σL−1
|σ0⟩ |σ1⟩⋯ |σL−1⟩

Corollary 1:  Any quantum state  can be transformed into a MPS form.|Ψ⟩



Approximation in MPS
|Ψ⟩ =

d−1

∑
σ0=0

∑
α0

d−1

∑
σ1=0

⋯
d−1

∑
σL−1=0

U(0)
σ0α0

U(1)
α0σ1α1

⋯U(L−3)
αL−4σL−3αL−3

U(L−2)
αL−3σL−2αL−2

Ψ(L−1)
αL−2σL−1

|σ0⟩ |σ1⟩⋯ |σL−1⟩

d

d

d

d2

d

d3

d

d4

d

d5

d

d6

d

d7

d

d8

d

d7

d

d5

d

d4

d

d3

d

d2

d

d

dd

d6

Without any approximation, the dimensions of virtual bonds grow exponentially toward the middle as above.

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

d

χ

dd

χ

So, as a way to avoid this, we approximate by setting the maximum value  
that can be calculated for the bond dimension of each virtual bond.

χ Truncation

How to Choose Bond Dimensions Appropriately?



Canonical forms of MPS

U U U U U U U U U U U U U U U Ψ

U

U†

=

U

U†

IU†U

physical 
bond =

IU†U

Ψ

Ψ†

= 1

(normalization)

In the previous method, the structure is as described above. This situation is called left canonical form.



Canonical forms of MPS

U U U U U U U U U U U U U U U Ψ

Ψ

SVD

VUU

U



Canonical forms of MPS

U U U U U U U U U U U U U U

U Ψ

VΨ

SVD

VU U

NOTE: SVD can be replaced by QR.



Canonical forms of MPS

U U U U U U U U U U U U U

U Ψ

VV

SVD

VU U

Ψ



Canonical forms of MPS

U U U U U U U U U U U U

U Ψ

VV

SVD
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Canonical forms of MPS
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VV

SVD
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Canonical forms of MPS

U U U U U U U U U U

U Ψ

VV

SVD

VU U

VVVΨ



Canonical forms of MPS

U U U U U U U U U

U Ψ

VV

SVD

VU U

VVVVΨ



Canonical forms of MPS

U U U U U U U U

U Ψ

VV

SVD

VU U

VVVVVΨ



Canonical forms of MPS

U U U U U U U VVVVVVVVΨ

This situation is called mixed canonical form.



Canonical forms of MPS

U U U U U U U VVVVVVVVΨ

V†

=

IV†V

V

Ψ†

= 1

Ψ

(normalization)

V†

=

IV†V

V



Canonical forms of MPS
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Canonical forms of MPS

U U U U U U

U Ψ

VV

SVD

VU U

VVVVVVVΨ



Canonical forms of MPS

U U U U U

U Ψ

VV

SVD

VU U

VVVVVVVVΨ



Canonical forms of MPS

U U U U

U Ψ

VV

SVD

VU U

VVVVVVVVVΨ
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Canonical forms of MPS

U U
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VV

SVD

VU U
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Canonical forms of MPS

U

U Ψ

VV

SVD

VU U

VVVVVVVVVVVVΨ



Canonical forms of MPS

VVVVVVVVVVVVVVVΨ

U U U U U U U VVVVVVVVΨ

right canonical form

mixed canonical form

U U U U U U U U U U U U U U U Ψ

left canonical form



Canonical forms of MPS

VVVVVVVVVVVVVVVΨ

VΨ

SVD

VΓ V



Canonical forms of MPS

VVVVVVVVVVVVVVVΓ

VΨ

SVD

VU V

New Γ

D D−1

=Ψ=V

Γ

Γ

= VΓ

VU

=

=U U Γ=

Γ

Γ

＝



Canonical forms of MPS

VVVVVVVVVVVVVVΓΓ
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SVD

VU V

New Γ

D D−1
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Canonical forms of MPS
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Canonical forms of MPS
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SVD
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Canonical forms of MPS

VVΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

VΨ

SVD

VU V

New Γ

D D−1

last Γ



Canonical forms of MPS

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

Γ

Γ†

Γ

Γ†

＝＝

ΓΓ＝ ＝U V

Vidal gauge

Γ

Γ†

＝1

Γ

Γ†

＝1

Γ

Γ†

＝

Γ

Γ†

＝

Γ＝U Γ ＝ V



Truncation in mixed canonical form
Problem: For a given MPS , we want to change some two tensors and determine a new 
MPS  that best approximates the original MPS , i.e.,  for

|Ψ⟩
|Φ⟩ |Ψ⟩ |Φ⟩ ∼ |Ψ⟩

Strategy: Choose two tensor  and  so as to maximize the overlap .A B ⟨Ψ |Φ⟩

|Ψ⟩ =

|Φ⟩ =

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓΓΓΓΓΓBAΓΓΓΓΓΓΓ

ΓΓΓΓΓΓΓBAΓΓΓΓΓΓΓ

Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ†



Truncation in mixed canonical form

IU†U IV†V IV†VI U†U

ΓΓΓΓΓΓΓBAΓΓΓΓΓΓΓ

Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ† Γ†

Γ

Γ†

＝

Γ

Γ†

＝

Γ

Γ†

＝

Γ

Γ†

＝



Truncation in mixed canonical form

BA

U† V†

dl

∑
αl=1

U*αl−1σlαl
Dαlαl

V*αlσl+1αl+1

A U A′ 

Assume  is complete for U αl−1σl

B B′ V

Assume  is complete for V σl+1αl+1

= =

U A′ B′ V
=

U C V

Γ† Γ†



Truncation in mixed canonical form

V

V†U†

U C

=

C

=
dim[D]

∑
αl=1

Dαlαl
Cαlαl

- Off-diagonal elements of  are not relevant. 

- We assume that the rank of  is  

-
Normalization condition yields . 

- Then,  gives maximum of overlap because of Cauchy-Schwarz inequality.

C
C χ < dim[D]

χ

∑
αl=1

C2
αlαl

= 1

Cαlαl
∝ Dαlαl

C

arg max

C

<latexit sha1_base64="kK3wR5eNqnSgiLuEvmYQvpbXZj4="></latexit>2

4

<latexit sha1_base64="8yFdiAFovMnmjH3duIRqiVwSdYo="></latexit>3

5 = : Same as but the rank is truncated.



Truncation in mixed canonical form
Problem: For a given MPS , we want to change some two tensors and determine a new 
MPS  that best approximates the original MPS , i.e.,  for

|Ψ⟩
|Φ⟩ |Ψ⟩ |Φ⟩ ∼ |Ψ⟩

Solution: Select the same tensor with reduced rank.

|Ψ⟩ =

|Φ⟩ =

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

truncation

dim[D]

χ

Note: Usually, truncation is performed at the same time that the canonical form is obtained.



Measurement of local operator

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†Γ†

A⟨Ψ | ̂A |Ψ⟩ =

ΓΓ

Γ†Γ†

A=

A big advantage of representations satisfying the isometric condition is that computation of 
expectation value of an local operator  can be replaced by local tensor contraction computation.̂A



Matrix product operator (MPO)

HHHHHHHHHHHHHHHH

σ0

σ′ 0

σ1

σ′ 1

σ2 σ3

σ′ 2 σ′ 3

σL−2

σ′ L−2

σL−1

σ′ L−1

⋯

⋯

⋯

⋯

Operator H = ∑
σ0σ1⋯σL−1

∑
σ′ 0σ′ 1⋯σ′ L−1

H(σ0σ1⋯σL−1)(σ′ 0σ′ 1⋯σ′ L−1) |σ0σ1⋯σL−1⟩⟨σ′ 0σ′ 1⋯σ′ L−1 |

σ0 σ1 σ2 ⋯ σL−1⋯

H

Matrix Product Operator



Apply MPO to MPS

H |Ψ⟩ =

There is two major methods : 

Applying MPO to MPS increases the bond dimension. Therefore, an approximation is required to suppress the bond dimension.

∼ |Φ⟩ =

1. Method utilizing the density matrices.

2. Fitting algorithm

This time, I will explain this.

Need sweeps and good initialization

[https://tensornetwork.org/mps/algorithms/denmat_mpo_mps/]



Apply MPO to MPS
Density matrix for all system

ρ =



Apply MPO to MPS
Reduced density matrix for the right-edge site

ρL−1 =

σL−1

σ′ L−1



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

B0



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

B1



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

B2



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

B3



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

Bl



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

BL−4



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

BL−3



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

BL−2



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

SVD



Apply MPO to MPS

ρL−1 =

Reduced density matrix for the right-edge site

σL−1

σ′ L−1

We adopt this isometry for the new MPS.

σL−1

αL−2



Apply MPO to MPS
Reduced density matrix for the  sites{L − 2,L − 1}

ρ{L−2,L−1} =
σL−1

σ′ L−1

BL−3

σL−2

σ′ L−2



Apply MPO to MPS
Approximated reduced density matrix for the  sites{L − 2,L − 1}

ρ̃{L−2,L−1} =

BL−3

σL−2

σ′ L−2
α′ L−2

αL−2

CL−1

=

αL−2

αL−2



Apply MPO to MPS

ρ̃{L−2,L−1} =

BL−3

σL−2

σ′ L−2 α′ L−2

αL−2

CL−1

C†
L−1

Approximated reduced density matrix for the  sites{L − 2,L − 1}



Apply MPO to MPS

ρ̃{L−2,L−1} =

Approximated reduced density matrix for the  sites{L − 2,L − 1}

SVD
σL−2

σ′ L−2 α′ L−2

αL−2



σL−2

σ′ L−2 α′ L−2

αL−2

Apply MPO to MPS

ρ̃{L−2,L−1} =

Approximated reduced density matrix for the  sites{L − 2,L − 1}



σL−2

σ′ L−2

α′ L−2

αL−2

Apply MPO to MPS

ρ̃{L−2,L−1} =

Approximated reduced density matrix for the  sites{L − 2,L − 1}

αL−2

σL−2

We adopt this isometry for the new MPS.



Apply MPO to MPS

σL−1

σ′ L−1

BL−4

Reduced density matrix for the  sites{L − 3, L − 2, L − 1}

σL−2

σ′ L−2

σL−3

σ′ L−3

ρ{L−3,L−2,L−1} =



Apply MPO to MPS

BL−4

Approximated reduced density matrix for the  sites{L − 3, L − 2, L − 1}

σL−3

σ′ L−3

ρ̃{L−3,L−2,L−1} =
α′ L−3

αL−3

CL−2

=

αL−3

=

αL−3

CL−1

αL−3



Apply MPO to MPS

BL−4

Approximated reduced density matrix for the  sites{L − 3, L − 2, L − 1}

ρ̃{L−3,L−2,L−1} =
σL−3

σ′ L−3 α′ L−3

αL−3

CL−2

C†
L−2

Structure of tensor network is same with previous one. 
Therefore, one can obtain isometry using same technique.

σL−3

σ′ L−3 α′ L−3

αL−3

SVD
σL−3

σ′ L−3 α′ L−3

αL−3

=
σL−3

σ′ L−3 α′ L−3

αL−3

=

σL−3

αL−3

New isometry



Apply MPO to MPS
Approximated reduced density matrix for the  sites{k, k + 1,⋯, L − 1}

SVD
σk

σ′ k α′ k

αk

= =

New isometry

Ck+1

=

αk

Ck+2

αk σk

σ′ k α′ k

αkσk

σ′ k α′ k

αk

Ck+1

Bk−1



Apply MPO to MPS
Approximated reduced density matrix for the  sites{1, 2,⋯, L − 1}

SVD
σ1

σ′ 1 α′ 1

α1

= =

New isometry

C2

=

α1

C3

α1 σ1

σ′ 1 α′ 1

α1σ1

σ′ 1 α′ 1

α1

C2

B0
σ1



Apply MPO to MPS
Left-edge tensor

=
C2

σ0

σ0

α0

C1

σ0 α0

= α0

σ0

Results yields a unique right canonical form automatically.



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓMPS

When performing time evolution calculations on MPS, the simplest method is to calculate Trotter slices 
called time-evolving block decimation.

Quantum computing is a time-evolution starting from a trivial initial state (a direct product state).
A direct product state is a matrix product state with bond dimension 1.



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
= ΓΓ

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
= ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU
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= ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
= ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
= ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
= ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
= ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU = ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ



Time-evolving block decimation (TEBD)
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Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ
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Time-evolving block decimation (TEBD)
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Time-evolving block decimation (TEBD)
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−1
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SVD



Time-evolving block decimation (TEBD)
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ΓΓ
= = VU = VU

−1
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−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
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SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓ
= = VU = VU

−1
= ΓΓ

−1

SVD



Time-evolving block decimation (TEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ



Parallelization of TEBD (pTEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

R.-Y. Sun, T. Shirakawa & S. Yunoki, in preparation 



Parallelization of TEBD (pTEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

p0 p1 p2 p3 p4 p5 p6 p7 MPI Process

R.-Y. Sun, T. Shirakawa & S. Yunoki, in preparation 

data trasfer

Contraction 
& SVD

Contraction 
& SVD



Parallelization of TEBD (pTEBD)

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ

p0 p1 p2 p3 p4 p5 p6 p7 MPI Process

R.-Y. Sun, T. Shirakawa & S. Yunoki, in preparation 

data trasfer

Contraction 
& SVD

Contraction 
& SVD

• tensor contractions (gate operations) done simultaneously 
• data transfer is local

Looks like ideal situation for parallelization



Simulation for 2D quantum circuit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In order to calculate a 2D system using MPS, the 2D system is forcibly regarded as a 1D system.
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Simulation for 2D quantum circuit

Then, the nearest-neighbor operators in the 2D system become distant operators in the virtual 1D system.
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Simulation for 2D quantum circuit

The simplest and most efficient way to handle these bonds in TEBD is by sandwiching the swap operator.
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SWAP operator Sij

Sij |σiσj⟩ = |σjσi⟩



Benchmark
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FIG. 4. Time cost (averaged for 10 repeats with di↵erent set of random parameters) per depth circuit simulation as a function
of the system size [N = L (N = L2) for 1D (2D) cases] in the simulations using sequential MPS algorithm (open circles) and
pTEBD algorithm (crosses): (a) RQC-1D with 300 physical circuit depths, (b) PQC-1D with 300 physical circuit depths, (c)
RQC-2D with 100 physical circuit depths, and (d) PQC-2D with 100 physical circuit depths. Notice that the number of depths
for calculating the data in (c) and (d) is the total depths after circuit recompiling [i.e., compiled depths (cf. Appendix A)].

FIG. 5. Wavefunction fidelity F as a function of total simulation time cost by using sequential MPS algorithm (open circles)
and pTEBD algorithm (crosses) in the simulation of (a) RQC-1D with L = 25, (b) PQC-1D with L = 24, (c) RQC-2D with
Lx = Ly = 5 (N = 25), and (d) PQC-2D with Lx = 4 and Ly = 6 (N = 24). Curve color indicates the physical depths of the
circuit and the presented data are taken average for 10 repeats with di↵erent set of random parameters.

the pTEBD algorithm dose not contain any real-space sequential procedure or requiring any global data com-
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FIG. 6. Schematic plots for (a) RQC-1D and (b) PQC-1D.
In (a), the colored squares represent one-site random gate. In
(b), the circuit for initializing the state to singlet dimers is
also included.

ulation of quantum many-body systems, of the nearest-
neighbor S = 1/2 Heisenberg model. Initializing from
the singlet dimers on (0, 1), (2, 3), · · · , (N �2, N �1) [see
Fig. 6(b)], a layer of eSWAP gates [31–37], Uij(✓) =
exp(�i✓Pij/2) with Pij being the SWAP gate acting at
qubit pair i and j, is applied on (1, 2), (3, 4), · · · , (N �
3, N � 2) [(0, 1), (2, 3), · · · , (N � 2, N � 1)] qubit pairs
for odd (even) physical circuit depth. For using HVA
in variational quantum algorithms [36, 37], each of ✓s is
the variational parameter to be optimized while we as-
sign uniformly distributed real random numbers to these
✓s in our benchmark simulations. The total number of
qubits N and the total number of physical circuit depths
D are restricted to even.

3. Two-dimensional random quantum circuit
(RQC-2D)

The RQC-2D is the direct extension of RQC-1D on 2D
square lattice with the number of qubits N = Lx ⇥ Ly.
The physical depths are ordered in ABCDABCD · · · pat-
terns shown in Fig. 7, where each rectangle indicates the

A B

C D

FIG. 7. Locations of two-site gates in each of patterns for
RQC-2D and PQC-2D. In this plot, we show the case for
Lx = 5 and Ly = 5.

place of CZ gate acted. The number of physical circuit
depths is restricted to a multiple of 4. The Lx and Ly

do not have specific restrictions. In the case that the ap-
plied two-site gate is out of the top and right edges of the
lattice, for instance, the first row of gates in B pattern
(see Fig. 7) with Ly = 4, we simply neglect these gates
when constructing this pattern.

Be distinct from 1D circuits where the natural mapping
between qubits and sites for the MPS representation ex-
ists, we need to decide this mapping for 2D circuits, i.e.,
fixing the MPS 1D path. Here, we choose the path shown
in Fig. 8(a) to let two-site gates in A and B patterns act
to the neighboring sites in the sense of this MPS 1D path.
Under this mapping, the two-site gates in C and D pat-
terns become long-distance gates such that, to perform
the MPS-based simulation, we need to recompile these
two patterns to the circuits with the gates only applying
to neighboring sites on the MPS 1D path. As an exam-
ple, this recompiling procedure for Lx = Ly = 4 case is
shown in Fig. 8(b). Note that the circuit depths increase
from 2 to 3(Ly �1)+2 after this recompiling. We denote
the circuit depth after this recompiling procedure as the
compiled circuit depth.

4. Two-dimensional parametrized quantum circuit
(PQC-2D)

Similar to the RQC-2D, PQC-2D is the extension of
PQC-1D on 2D square lattice with the number of qubits
N = Lx ⇥ Ly. A minor di↵erence is that we use the A
pattern at the most front to prepare the singlet dimer
initial state. Except for this A pattern, other A patterns
are constructed by eSWAP gates as usual. Because of this
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FIG. 6. Schematic plots for (a) RQC-1D and (b) PQC-1D.
In (a), the colored squares represent one-site random gate. In
(b), the circuit for initializing the state to singlet dimers is
also included.

ulation of quantum many-body systems, of the nearest-
neighbor S = 1/2 Heisenberg model. Initializing from
the singlet dimers on (0, 1), (2, 3), · · · , (N �2, N �1) [see
Fig. 6(b)], a layer of eSWAP gates [31–37], Uij(✓) =
exp(�i✓Pij/2) with Pij being the SWAP gate acting at
qubit pair i and j, is applied on (1, 2), (3, 4), · · · , (N �
3, N � 2) [(0, 1), (2, 3), · · · , (N � 2, N � 1)] qubit pairs
for odd (even) physical circuit depth. For using HVA
in variational quantum algorithms [36, 37], each of ✓s is
the variational parameter to be optimized while we as-
sign uniformly distributed real random numbers to these
✓s in our benchmark simulations. The total number of
qubits N and the total number of physical circuit depths
D are restricted to even.

3. Two-dimensional random quantum circuit
(RQC-2D)

The RQC-2D is the direct extension of RQC-1D on 2D
square lattice with the number of qubits N = Lx ⇥ Ly.
The physical depths are ordered in ABCDABCD · · · pat-
terns shown in Fig. 7, where each rectangle indicates the

A B

C D

FIG. 7. Locations of two-site gates in each of patterns for
RQC-2D and PQC-2D. In this plot, we show the case for
Lx = 5 and Ly = 5.

place of CZ gate acted. The number of physical circuit
depths is restricted to a multiple of 4. The Lx and Ly

do not have specific restrictions. In the case that the ap-
plied two-site gate is out of the top and right edges of the
lattice, for instance, the first row of gates in B pattern
(see Fig. 7) with Ly = 4, we simply neglect these gates
when constructing this pattern.

Be distinct from 1D circuits where the natural mapping
between qubits and sites for the MPS representation ex-
ists, we need to decide this mapping for 2D circuits, i.e.,
fixing the MPS 1D path. Here, we choose the path shown
in Fig. 8(a) to let two-site gates in A and B patterns act
to the neighboring sites in the sense of this MPS 1D path.
Under this mapping, the two-site gates in C and D pat-
terns become long-distance gates such that, to perform
the MPS-based simulation, we need to recompile these
two patterns to the circuits with the gates only applying
to neighboring sites on the MPS 1D path. As an exam-
ple, this recompiling procedure for Lx = Ly = 4 case is
shown in Fig. 8(b). Note that the circuit depths increase
from 2 to 3(Ly �1)+2 after this recompiling. We denote
the circuit depth after this recompiling procedure as the
compiled circuit depth.

4. Two-dimensional parametrized quantum circuit
(PQC-2D)

Similar to the RQC-2D, PQC-2D is the extension of
PQC-1D on 2D square lattice with the number of qubits
N = Lx ⇥ Ly. A minor di↵erence is that we use the A
pattern at the most front to prepare the singlet dimer
initial state. Except for this A pattern, other A patterns
are constructed by eSWAP gates as usual. Because of this

2D

1D

Type A Type B

Type B

Type A

Random circuit benchmarks on Fugaku show weak scaling.



Wavefunction norm stabilization
- Although the norm of the wavefunction is an unphysical quantity which means it does not have an impact on the 
calculation of physical observables, it turns out strongly influencing the stability when performing numerical simulations in 
practice, hence we need be elaborative to the norm deviation induced by the parallel MPS compression. 8
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FIG. 3. Wavefunction norm of the MPS as a function of physical circuit depths D for the pTEBD simulations of (a) RQC-1D
with N = 101, (b) PQC-1D with N = 100, (c) RQC-2D with Lx = Ly = 12 (N = 144), and (d) PQC-2D with Lx = Ly = 12
(N = 144). The data averaged for 10 repeats with (without) the wavefunction norm stabilization procedure are marked by
open diamonds (squares). Black dashed lines indicate the norm equals to 1.

the pTEBD algorithm.
In the unitary quantum dynamic process described by

quantum circuit with local gates, the quantum entangle-
ment propagates within a finite range after applying one
depth circuit. Therefore, ⇤[i]s are still good approxima-
tions for the environments of each local two-site subsys-
tem while the canonical form has been globally deviated.
This argument explains the possible reason of the high
precision of the pTEBD algorithm.

2. Numerical stability

Then, we demonstrate that the stabilized parallel MPS
compression is crucial for maintaining the numerical sta-
bility in the pTEBD simulation. We measure the wave-
function norm with increasing circuit depth up to 1000
(100) physical circuit depths for 1D (2D) quantum cir-
cuits in the simulation with/without wavefunction norm
stabilization procedure. The corresponding data are il-
lustrated in Fig. 3.

In the cases without wavefunction norm stabilization
(see open squares in Fig. 3), the wavefunction norm de-
cays monotonically and exponentially. While it slightly
increases with the bond dimensions �, a tiny value ⇠
10�14 is approached after simulating around 200 (20)
physical depths circuit in 1D (2D) cases, indicating that
a renormalization procedure (a sequential calculation
breaking the real-space parallelism) must be taken to
suppress the decaying wavefunction norm and stabilize

the simulation.
As a sharp comparison, in the cases using stabilized

parallel MPS compression (see open diamonds in Fig. 3),
the wavefunction norm is always close to one refusing
to decay with the circuit depths increasing. This means
that, in the simulation of unitary quantum dynamics, the
numerical stability can be maintained by the stabilized
parallel MPS compression even the MPS has deviated
from the canonical form because of keeping finite bond
dimension. Hence, no sequential procedure is required
during the whole pTEBD simulation, implying the re-
alization of the scalability (i.e., the performance weak
scaling).

3. Performance

Next, we examine the performance of the pTEBD algo-
rithm from two perspectives. On the one hand, we study
the relation between time cost per depth simulation and
the system size N (i.e., evaluating the performance weak
scaling). On the other hand, we explore the time cost
for achieving a given simulation precision (measured by
wavefunction fidelity F) by using sequential MPS algo-
rithm and pTEBD algorithm.

As shown in Fig. 4, for a fixed bond dimension �,
we can see that the pTEBD algorithm costs nearly a
constant time for simulating circuits with various sys-
tem sizes thus achieving a nearly perfect weak scaling
for the performance. It is easy to be understand since

: Number of layersD

We find that local rescaling of the 
diagonal singular value tensor stabilize the 
norm of MPS wavefunction.
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Problem

No simplification is possible in the calculation of expected values for local physical quantities
Possibly less accurate than sequential methods
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Simple TEBD/pTEBD algorithm breaks the isometric condition.

To recover the isometric condition, end-to-end sweeps that cannot be parallelized are required.



Problem

No simplification is possible in the calculation of expected values for local physical quantities
Possibly less accurate than sequential methods

Simple TEBD/pTEBD algorithm breaks the isometric condition.
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However, even after taking accuracy into account, 
the gain over computation time is superior to the 
sequential method.

Therefore, in the case of the MPS simulator, 
the benefit of parallelization is tremendous.

open circles: sequential method 
cross: pTEBD

To recover the isometric condition, end-to-end sweeps that cannot be parallelized are required.



2D tensor network state 
(Projective Entanglement-Pair States, PEPS)



Projected Entangled Pair States (PEPS)

- PEPS is a 2D tensor network version of MPS

- Each tensor has virtual bonds on 2D lattice and one physical bond.

- Any state can be transformed into PEPS form 
(if we do not limit the bond dimension.)

physical bond

virtual bonds

- Approximation sets the maximum bond dimension χ



Isometric tensor network state (IsoTNS)

- To clarify the direction of isometry, we use arrows.

- Assume that the arrows of physical bonds always point into the tensor.

- For 2D system, IsoTNS is a PEPS with Isometric condition.

=

= P For isometry, opposite contraction 
yields projector.

- Tensor network composed of isometric tensors

- For 1D system, MPS’s with canonical form are IsoTNS.

[Zeletel&Pollmann, PRL 124, 037201 (2020)]



Isometric tensor network state (IsoTNS)

Unlike in MPS, reversing the direction of Isometry is non-trivial.

Moses move method [Zeletel&Pollmann, PRL 124, 037201 (2020)]

⋯

Unlike QR/SVD, Moses move is an approximation method.



Isometric tensor network state (IsoTNS)

Gauging Tensor Network [Tindall&FIshman, arXiv:2306.1783]

- Vidal gauge

- Evenbly gauge [Evenbly, Phys. Rev. B 98, 085155 (2018)]

=

- A approximate iterative method to obtain this gauge using belief 
propagation has been proposed. [Tindall&Fishman, arXiv:2306.17837]



Calculation of expectation value
When taking expectation value of local quantity for PEPS, the 
computation time is exponential if we try to take all contractions.
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Calculation of expectation value
A possible way of the contraction is “boundary-MPS” method

∼

MPS MPO MPS

However, computational cost becomes large.



Calculation of expectation value
A possible way of the contraction is “boundary-MPS” method

∼

MPS MPO MPS

However, computational cost becomes large.
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Calculation cost for MPO-MPS 
part scales as O(χ7)

By using the Monte Carlo 
method, the computational 
cost can be reduced.



Calculation of expectation value
However, in IsoTNS, it is drastically easy.

= =

Problem is that we need “sequential transformation using Moses move.”



Calculation of expectation value
GaugingTNS also becomes same to IsoTNS.

= =

Problem is that belief propagation needs sequential optimization.



Parallel TEBD2

QR

SVD

Like pTEBD, local unitary operation can be parallelized

We are now exploring the way to recover the Vidal gauge efficiently.



Relation to Quantum 
Computing



Tensor network and Quantum Circuit
MPS and Quantum Circuit

Right canonical MPS

A circuit representation of MPS

χ χ

physical bond

virtual bond
χ χ χ

This side 
corresponds 

to the 
physical 
bonds

MPS-based circuits can be simulated efficiently in classical computer.
This means the simulator is useful for preparing the input states by MPS-based circuit.

Number of gates = O(χ2N)



Tensor network and Quantum Circuit
MPS and Quantum Circuit

PEPS-based circuits require exponential computational cost on 
classical computers but O(χ4N) on a quantum computer.

2D IsoTNS A circuit representation of PEPS

Number of gates = O(χ4N)

Absence of barren plateau in 2D IsoTNS circuit [Slattery&Clark, arXiv:2108.02792]



Summary
Isometric tensor network (IsoTN) and gauging tensor network (GaugingTN) have big advantages for

- evaluating expectation value of local quantity

- sometime accuracy

- converting the classical information to the quantum circuit

However, converting to isometric form requires sequential operations, so it is difficult to parallelize that part.


