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Numerical studies in condensed matter physics
Development of quantum algorithms
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Tomonori Shirakawa

Numerical studies in condensed matter physics, application of quantum algorithms
Exact diagonalization, DMRG, Cluster perturbation theory, ab-initio QMC, NISQ devices, Variational Monte Carlo

Rong-Yang Sun

Numerical studies on quantum many-body problems, development of quantum algorithms
MPS, NISQ devices

Kazuma Nagao
Dynamics in guantum many-body systems
Truncated Wigner approximation

Hidehiko Koshiro
Numerical & Theoretical studies on guantum many-body systems High-performance computing or the quantum world

Tensor network methods https://gracequantum.org/

Libraries for tensor network methods




Introduction



Tensor network methods

- Computational methods that have developed as a compact way to represent quantum many-body states
PEPS

Tree tensor networks

Compression of an exponentially large vector (tensor) into product of low-rank tensors

- It has recently attracted attention as an efficient representation of machine learning models and as
a highly efficient compression method for big data.

[Stoundemire&Schwab, 2017] [Shi-Ju Ran group, arXiv:2305.06058]
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Near-term guantum devices

Executed by IBM @
On target )

Development Roadmap

2019 @ 2020 @ 2021 @ 2022 @

Run quantum circuits Demonstrate and Run quantum Bring dynamic circuits to

on the IBM cloud prototype guantum programs 100x faster Qiskit Runtime to unlock
algorithms and with Qiskit Runtime more computations
applications

Model
Developers

Algorithm Quantum algorithm and application modules
Developers
Machine learning | Natural science | Optimization

Kernel Circuits ©
Developers

System Falcon @  Hummingbird @&  Eagle @  Osprey (V]
Modularity 27 qubits 65 qubits 127 qubits 433 qubits

<>

Qiskit Runtime @

Dynamic circuits @

* Noisy intermediate-scale quantum (NISQ) era Quantum Computing in the NISQ era and beyond

- Afew 0(107 ~ 10%) qubits without error correction [t

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics,

California Institute of Technology, Pasadena CA 91125, USA

»  Afew O(10' ~ 10%) depths circuit evolution 30 July 2018

IBM Quantum

2023 2024 2025 2026+

Enhancing applications Improve accuracy of Scale quantum applica- Increase accuracy and
with elastic computing Qiskit Runtime with tions with circuit knitting speed of quantum

and parallelization of scalable error mitigation toolbox controlling workflows with integration
Qiskit Runtime Qiskit Runtime of error correction into

Qiskit Runtime

Quantum software applications

Machine learning | Natural science | Optimization

Quantum Serverless @

Intelligent orchestration Circuit Knitting Toolbox Circuit libraries

Threaded primitives @ Error suppression and mitigation Error correction
Condor &) Flamingo Kookaburra Scalingto
1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits
with classical
2 and quantum

communication

@ N 2

Heron @ Crossbill
133 qubits xp 408 qubits

o, N

Near-term aim: achieve useful quantum advantage on NISQ devices



Quantum computing and tensor network methods

Main uses of tensor network methods for research of guantum computing

1. Tensor network as a simulator for guantum computing

- Exact contraction of quantum circuit (similar to the state-vector simulator)
(0] CTOC|0) = Tr[U,,---U,U, | 0){0] lAﬁlLlA]; lA]LO] — Compute all contractions as products of tensors

- Simu

ators usi

ng tensor network method to approxi

mate quantum states after gate operations
Today’s topic: tensor network simulator

2. Development of useful algorithm based on the tensor network

- Construct a circuit for state preparation

nased on the tensor network states

Find quantum circuit C = U,,U,,_,---U,|0) st.|¥) ~ U,,U,,_,---U, | 0)

- Circuit optimization/compilation by decomposing the large unitary operator into a product of small unitary operator
Find optimal product of lA]MlA]M_l---lAfl st. C ~ lAfMlA/M_l---lAfl

- Error mitigation utilizing the compression performance of tensor networks [Nation et al., PRX Quantum 2, 040326 (2021)]



Tensor network simulators

State vector simulator

Tensor network simulator

PEPS
MPS
Can compute any quantum circuits Can compute quantum circuits with large qubits
Hard limitation on number of qubits Limitation on entanglements

Why we need the simulator of quantum computer?
(1) To check the validity of the quantum algorithm assuming that the guantum computer has worked correctly.

In order to explore the useful applications of guantum computers, it is necessary to check the results of guantum computers when they work properly.

(2) To verify that the quantum computer is working properly

Current quantum computing devices are noisy and have no error correction, so they must be evaluated against correct operation.

(3) To bridge the classical information and quantum information

The simulator is useful in converting data for a single task in a joint effort between a quantum computer and a classical computer.



Tensor network simulators

Performance comparison with real quantum devices
[Google, Nature 574, 505-510 (2019)]

2021 ACM Gordon Bell Prize

Fugaku TNC(Tensor Network Contraction) Q

Supercomputer

Hy

Buipoou

48qubits[26]

- —————

45qubits[13]

7*7*39RQC[18]
2017 TaihuLight

7*7*27RQC[22]

Corhpression

5*9*24RQC[33]

2017 Theta 7*7*40RQC[11]

(]
36qubits[6]

5
O

9*5*40RQC[3]

Sycamore- 8*8*40RQC[29]
53*200yclesRQC[21]

Single Node 7*7*40RQC [30] f 10*10*40RQC (Our work)

2021 Sunway new supercomputer
Sycamore-53*20cyclesRQC[14] O 9*9*40RQC[5] ‘

2018 Cluster in DISTDAG

53
#Qubits

- optimal slicing scheme

- three-level parallelization scales to about 42
million cores

- fused permutation and multiplication design
for tensor contraction

- mixed-precision scheme

Real-device experiment
for random circuits

[IBM, Nature 618, 500 (2023)]
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Real-device experiment
for guench dynamics

[Zhou et al, PRX 10, 041038 (2020)]

° [112]
s [29]
* [4,2,2,4]
« [5,2,5]
[6,6]
f=98.6%, F=0.002

e [4,2,2,4]-[3,2,2,5]
e [4,4,4]10][3,4,5]

m [28]e(1,24 3]

o [4,2%1e]3,23,3]

¢ [4,2,2,4]e]5,2,5]
—-=- f=98.6% F=0.002

Tensor network simulation

[Tindall et al., arXiv:2306.14887]

isoTNS, xy =12

Eagle Processor e
---- TNS (BP), x — o0

MPS, x =104
TNS (BP), x = 500 ]F

Tensor network simulation
(using Belief propagation technique)

No one knows the limit of performance.



Outline

- Matrix product state
- Canonical form and gauging form

- Measurement and applying operator to state
- Time-evolving block decimation (TEBD) and its parallelization
- Extension to 2D tensor network (on-going project)

- Relation between tensor network and quantum circuit



Notations



Graphical representations of tensors

Tensors Contraction

Rank O tensor (scaler) . C H — Vil = Z Vill; = .
i
Rank 1 tensor (vector) 4. Uu H = Au = Z Al-juj = 4.

J
Rank 2 tensor (matrix) + A;j H = AB = ZAiijk = +
J

Rank 3 tensor 4‘7 Lk / We call each line “bond”.
Rank 4 tensor + Ly ‘




Analytical decomposition

Singular value decomposition (SVD) QR decomposition
A DV A R
SV |
A DV A R

QR decomposition is not used for bond
truncation, but is useful for extracting
associated low-rank tensors.

Henceforth, a diagonal matrix tensor is
represented using a diamond-shaped symbol.




1D tensor network state
(Matrix Product State, MPS)




Tensor representation of quantum states

A quantum state (wave function) defined on a lattice L = {0,1,---, L — 1}: L denotes labels of sites on a lattice.

d—1 d—1

|W) = Z Z Z S N I S S 1) B P Ay | 6,) (6, = [0,d)) denotes the local

eigenstate on a site /.

0p0=006,=0 o¢;,_=0

The coefficients for each basis can be viewed as elements of a tensor.

GO 61 02 ceoe cooe GL—l

We call the subscripts
corresponding to the basis of the
physical system “physical bonds.”




Matrix product states (MPS)

d—1 d-1

Quantum state |¥) = Z Z Z Yoo, 0, 1‘“0)“’1) lop_1)

S

N

d—1 d-1 —1

MPS |¥) = Z Z Z M, M, M, | 0o) | 01)++ 1 0_1) physical bonds

00—0 0-1—0 GL 1:O // /

virtual bonds/J




Generality of MPS and “truncation”

Generality of MPS: Any quantum state can be expressed as a MPS form.
d—1 d-1 d—1

P = 2 2 Y60 100 101} 01_1)

O'O:O GIZO O'L_IZO

S

D




Generality of MPS

d—1 d-1 —1

|‘P)—ZZ Z ¥ ooy 1 G0 101) = T op_1)

o e

SVD




Generality of MPS

| W) = Z Z Z Z U(E.OO&O éggo ;(?()Gl ‘0())‘51)'“ [o7-1)

6=0 @ o=0  ¢;_,=0




Generality of MPS

d—1 d—1 d—1
— (0) (1)
‘ \P> i Z Z Z Z UGOO‘O‘P(GOUD(%“'UL—O | GO> ‘ 61) ‘ 6L_1>

GOZO ao 0-120 O'L_1=O ! !

SVD




Generality of MPS

0 | 1 |
W) = Z ) Z Z UsgonUbara D Vet oy 102 101) 7+ 1011)

cp=0 oy 0)=0 o0;,_=0




Generality of MPS

ORI 2
‘lP> — Z Z Z Z UG()Oto 06001611?&0510'2)(0'3 ‘GO) | Gl>.“ ‘6L_1>

cp=0 oy 0)=0 o0;,_=0 ! !

SVD




Generality of MPS

—1 —1

0 | 2 2
‘ lII) N Z Z Z Z Ugoc)(() C(Ioglal O(tlgzazDazaZVO(Q()@...GL_l) ‘ 00> ‘ 61>... | 0L_1>

=0 oy o,=0 o; _1=0




Generality of MPS

O g @) 3
‘lP> — Z Z Z Z Udoao 0101 alazazTEai@)(@l ‘60) ‘ 61>“. ‘0L_1>

cp=0 oy 0)=0 o;,_=0 ! !

SVD




Generality of MPS

O g @) (3) (3)
‘ T) N Z Z Z Z UGOO(O 00101 a162a2Ua20'3a3Da3a3Va3(04...GL_l) ‘ 60> ‘ Gl> ‘ GL—1>

cp=0 oy 0)=0 o0;,_4=0




Generality of MPS

E : (O) 1
000(0 C(I()g 1 04 1 ézg (3) ?(4)
10207 ~ 0303~ (az04)( |6 >| >
3 4 05...6L_1) O 01 °t ‘ 6
L—1>

o —
=0 oy 6,=0 o;_1=0

QR




Generality of MPS

OR 71N §4C) &)
‘lP) i Z Z Z Z UGOO‘O aoay 0‘3640‘4‘11(05405)(06“'%—1) | GO> ‘ 61) ‘6L_1>

cp=0 oy 0)=0 o0;,_4=0

QR




Generality of MPS

0 | 5 6
‘lP) B Z Z Z Z Uéogco (5603101. (gf4gsas‘PgC52f607"'0L—1 ‘ 00) ‘ 61>”. ‘GL_I)

cp=0 oy 0)=0 o0;,_4=0

QR




Generality of MPS

0 1 6 7
‘lP) i Z Z Z Z Uéogto C(Zoglal. é5;60‘6q]gf62)'708“'%—1 ‘ 60) ‘ 51)... ‘GL_l)

cp=0 oy 0)=0 o0;,_4=0

QR




Generality of MPS

0 | 7 3
‘lP) i Z Z Z Z Uéogto 0(5031051. 0(56;70‘7LIJ§17)0809"'0L—1 ‘ 60) ‘ 01>“. |0L_1>

cp=0 oy 0)=0 o0;,_4=0

QR




Generality of MPS

0 1 [—1 [
‘lP) i Z Z Z Z Uéogfo (S‘oglal. (gfz 20)1 1 1LP£¥1)—10101+1"'0L—1 ‘ 60) | 01>”. ‘6L_1>

6o=0 a, =0 o;,_1=0

QR




Generality of MPS

0 1 [—1 [
‘lP) i Z Z Z Z Uéogfo (S‘oglal. (gfz 20)1 1 1LP£¥1)—10101+1"'0L—1 ‘ 60) | 01>”. ‘6L_1>

6o=0 a, =0 o;,_1=0

QR




Generality of MPS

0 1 [—1 [
‘lP) i Z Z Z Z Uéogfo (S‘oglal. (gfz 20)1 1 1LP£¥1)—10101+1"'0L—1 ‘ 60) | 01>”. ‘6L_1>

6o=0 a, =0 o;,_1=0

QR




Generality of MPS

0 1 [—1 [
‘lP) i Z Z Z Z Uéogfo (S‘oglal. (gfz 20)1 1 1LP£¥1)—10101+1"'0L—1 ‘ 60) | 01>”. ‘6L_1>
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QR




Generality of MPS

0 1 [—1 [
‘lP) i Z Z Z Z Uéogfo (S‘oglal. (gfz 20)1 1 1LP£¥1)—10101+1"'0L—1 ‘ 60) | 01>”. ‘6L_1>

6o=0 a, =0 o;,_1=0

QR




Generality of MPS

0 1 [—1 [
‘lP) i Z Z Z Z Uéogfo (S‘oglal. (gfz 20)1 1 1LP£¥1)—10101+1"'0L—1 ‘ 60) | 01>”. ‘6L_1>

6o=0 a, =0 o;,_1=0

QR




Generality of MPS

0 | L 3 L-2
‘lP) i Z Z Z Z Uéogfo C(Ioglal. (gfL 40)L 30— 3‘1151L—30)L—20L—1 ‘ 60) | Gl>m ‘6L_1>

cp=0 oy 0)=0 o0;,_4=0

QR




Generality of MPS

0 | L 3 L-2
‘lP) i Z Z Z Z Uéogfo C(Ioglal. (gfL 40)L 30— 3‘1151L—30)L—20L—1 ‘ 60) | Gl>m ‘6L_1>

cp=0 oy 0)=0 o0;,_4=0




Generality of MPS

Corollary 1: Any quantum state | %) can be transformed into a MPS form.

d—1 d-1 d—1

W) = Z Z Z Yoo, 1002 [01) T op_1)

0():0 61=O 6L—1=O

d—1 d—1 d—1

— 0 | L-3 L-2 L—1
il Z Z Z UfgogfoUO(‘oglal." UO(lL—402—3aL—3 UC(ZL—3UZ—20[L—2\P£¥L—25)L—1 ‘ 60) ‘ 01) ‘ GL—1>

60=O a() 01=O 0L—1=O




Approximation in MPS

0 | L-3 L-2 L—-1
‘\P> i Z Z Z Z Uéoo)fo 6(1031051 UO(‘L 402 30— 3U0(5L 30)L 20— 2\{ng 20)L 1 | 00) ‘ 61)0“ ‘GL—1>

7 A | d d d d d d d d d d d d d

d d* d° d* d&° d° d' 4% d d° 40 dF 4P d* d

Without any approximation, the dimensions of virtual bonds grow exponentially toward the middle as above.

X X X X X X X X X X X X X X X

S0, as a way to avoid this, we approximate by setting the maximum value y
that can be calculated for the bond dimension of each virtual bond.

=3 Truncation

How to Choose Bond Dimensions Appropriately?



Canonical forms of MPS

physical

(normalization)

In the previous method, the structure is as described above. This situation is called left canonical form.



Canonical forms of MPS




Canonical forms of MPS

NOTE: SVD can be replaced by QR.




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS

This situation is called mixed canonical form.




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS

right canonical form




Canonical forms of MPS




Canonical forms of MPS

B o

4
rVy v Iy B, B, B, bx, BX, BX, B4, X, X, 1, 4, B, M,
hu




Canonical forms of MPS

I’ lll!.II'I 4 4 Vv |4 vV vV V % % Vv vV vV
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Canonical forms of MPS




Canonical forms of MPS




Canonical forms of MPS
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Canonical forms of MPS




Canonical forms of MPS
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Canonical forms of MPS
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Canonical forms of MPS
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Canonical forms of MPS
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Canonical forms of MPS
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Canonical forms of MPS
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Canonical forms of MPS




Truncation in mixed canonical form

Problem: For a given MPS | ), we want to change some two tensors and determine a new
MPS | ®) that best approximates the original MPS | W), i.e.,

D) ~ |W) for

|W) =

| @) =

Strategy: Choose two tensor A and B so as to maximize the overlap (W | ®).

ol ntloh ot nilonilobuilo-hnilo-builolntlotutlo-tatlot it o bl ol nilobnilobni




Truncation in mixed canonical form

Il " [t '

I r?‘r?“rJF ﬁ IIIIIIIIII FTFTFT I
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Truncation in mixed canonical form

e

Us D, V¥

;1010 o0 ° Q011074

Assume U is complete for a;_,0; Assume V' is complete for 6, 10,

P




Truncation in mixed canonical form

dim[D]
= = DOWICOWZ
;=1

- Off-diagonal elements of C are not relevant.
- We assume that the rank of C'is y < dim[D]
X

Normalization condition yields Z Cgﬂl = 1.
al=1

- Then, C,, &« D, , gives maximum of overlap because of Cauchy-Schwarz inequality.

arg max

= C all

— —@— :Same as —@— but the rank is truncated.




Truncation in mixed canonical form

Problem: For a given MPS | ), we want to change some two tensors and determine a new
MPS | ®) that best approximates the original MPS | W), i.e.,

D) ~ |W) for

|¥) =
dim|[D]

| @) =

Solution: Select the same tensor with reduced rank. —— truncation

Note: Usually, truncation is performed at the same time that the canonical form is obtained.



Measurement of local operator

ilotnlotinlotinilotailotnilotniloin " oot nlotnilotiniotntobnilotn
(PNIA|Y) = .".. '-A .......
I I I I I I I I 'l I I r I I I I I

A big advantage of representations satistying the isometric condition is that computation of
expectation value of an local operator A can be replaced by local tensor contraction computation.



Matrix product operator (MPO)

— o, /
Operator H = Z Z H(G()Gl'“0L_1)(0(’)Gi"-0i_1) ‘ 0(0 "°GL—1><0061 01

/ / /
0()01°°°01,_1 00010 _1

GO 01 62 ceoe ceooe GL—l

D

Matrix Product Operator




Apply MPO to MPS

Applying MPO to MPS increases the bond dimension. Therefore, an approximation is required to suppress the bond dimension.

mwm-ddd e eIl il il

~ | D) =

There is two major methods : 1. Method utilizing the density matrices. — This time, | will explain this.
[https://tensornetwork.org/mps/algorithms/denmat_mpo_mps/]

2. Fitting algorithm Need sweeps and good initialization



Apply MPO to MPS

Density matrix for all system

0600600000060 06¢
' 0066 0606606868600¢



Apply MPO to MPS

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
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Apply MPO to MPS

Reduced density matrix for the right-edge site

' 506 606066686806¢

""""""" Or_1

000080000000




Apply MPO to MPS

Reduced density matrix for the right-edge site

iﬁ'#ﬁ#ﬁ'#ﬁ#ﬁ'#ﬁ

0000000000088




Apply MPO to MPS

Reduced density matrix for the right-edge site

560066660808t

l I I I I I I I I I I I I i

000000000080




Apply MPO to MPS

Reduced density matrix for the right-edge site

0600666860806

l I I I I I I I I I I I i

80000000000




Apply MPO to MPS

Reduced density matrix for the right-edge site

0668666808

l I I I I I I I I I I i

PSP PP PR P




Apply MPO to MPS

Reduced density matrix for the right-edge site

06686868688

l I I I I I I I I I N

000000000




Apply MPO to MPS

Reduced density matrix for the right-edge site

066686866

o1 _1
Pr-1 =
Oy

00000000




Apply MPO to MPS

Reduced density matrix for the right-edge site

56808868

o1 _1
Pr-1 =
Oy

6000600




Apply MPO to MPS

Reduced density matrix for the right-edge site

PP PP PP

o1 _1
Pr-1 =
Oy

POPPPP PP




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site



Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the right-edge site




Apply MPO to MPS

Reduced density matrix for the {L — 2,L. — 1} sites

PiL-21—-1) =




Apply MPO to MPS

Approximated reduced density matrix for the {L — 2, — 1} sites

PiL-21-1) =




Apply MPO to MPS

Approximated reduced density matrix for the {L — 2, — 1} sites

PiL-21-1) =




Apply MPO to MPS

Approximated reduced density matrix for the {L — 2, — 1} sites

PiL—2L-1} ="




Apply MPO to MPS

Approximated reduced density matrix for the {L — 2, — 1} sites

PiL-21-1) =




Apply MPO to MPS

Approximated reduced density matrix for the {L — 2, — 1} sites

PiL-21-1) =




Apply MPO to MPS

Reduced density matrix forthe {L — 3, L — 2, L — 1} sites

/ / /
O3 O o> Op 4

PiL-31-21—-1} =
03 O Op_j




Apply MPO to MPS

Approximated reduced density matrix forthe {L — 3, L — 2, L — 1} sites




Apply MPO to MPS

Approximated reduced density matrix forthe {L — 3, L — 2, L — 1} sites

Structure of tensor network is same with previous one.
Therefore, one can obtain isometry using same technique.




Apply MPO to MPS

Approximated reduced density matrix for the {k, k+ 1,---, L — 1} sites

-

* New isometry

o808




Apply MPO to MPS

Approximated reduced density matrix for the {1, 2,---, L — 1} sites

New iIsometry




Apply MPO to MPS

Left-edge tensor

Results yields a unique right canonical form automatically.



Time-evolving block decimation (TEBD)

MPS Il I

When performing time evolution calculations on MPS, the simplest method is to calculate Trotter slices
called time-evolving block decimation.

Quantum computing is a time-evolution starting from a trivial initial state (a direct product state).
A direct product state is a matrix product state with bond dimension 1.



Time-evolving block decimation (TEBD)




Time-evolving block decimation (TEBD)




Time-evolving block decimation (TEBD)




Time-evolving block decimation (TEBD)




Time-evolving block decimation (TEBD)




Time-evolving block decimation (TEBD)




Time-evolving block decimation (TEBD)
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Time-evolving block decimation (TEBD)
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Time-evolving block decimation (TEBD)
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Parallelization of TEBD (pTEBD) ... ..o
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Parallelization of TEBD (pTEBD) ... ..o

data trasfer
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Contraction - tensor contractions (gate operations) done simultaneously

& SVD < - data transfer is local

Looks like ideal situation for parallelization
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Simulation for 2D quantum circuit

O 1 2 3 4 5 6 7 3 9 10 M1 12 13 14 15

In order to calculate a 2D system using MPS, the 2D system is forcibly regarded as a 1D system.



Simulation for 2D quantum circuit

:| Position of 1st layer operators B— st [ayer operators
|:| Position of 2nd layer operators B—8 2nd layer operators

:i‘: O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
:=EJ ':=§J i
\ i
O L L -
e o
--- ---
viﬂ 1

Then, the nearest-neighbor operators in the 2D system become distant operators in the virtual 1D system.



Simulation for 2D quantum circuit

I:I Position of 1st layer operators B—8 st [ayer operators X—X  SWAP operator Sl-j

I:I Position of 2nd layer operators B—8 2nd layer operators Slj|0i0j) = \ajal-)
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The simplest and most efficient way to handle these bonds in TEBD is by sandwiching the swap operator.



Benchmark
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Random circuit benchmarks on Fugaku show weak scaling.




Wavefunction norm stabilization

- Although the norm of the wavefunction is an unphysical quantity which means it does not have an impact on the
calculation of physical observables, it turns out strongly influencing the stability when performing numerical simulations in
practice, hence we need be elaborative to the norm deviation induced by the parallel MPS compression.

D: Number of layers

We find that local rescaling of the
diagonal singular value tensor stabilize the
norm of MPS wavefunction.
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Problem

Simple TEBD/pTEBD algorithm breaks the isometric condition.
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No simplification is possible in the calculation of expected values for local physical quantities
Possibly less accurate than sequential methods
To recover the isometric condition, end-to-end sweeps that cannot be parallelized are required.



Problem

Simple TEBD/pTEBD algorithm breaks the isometric condition.
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However, even after taking accuracy into account,
102 the gain over computation time is superior to the
. sequential method.

10~4

-6 Therefore, in the case of the MPS simulator,
10~ the benefit of parallelization is tremendous.
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No simplification is possible in the calculation of expected values for local physical quantities
Possibly less accurate than sequential methods
To recover the isometric condition, end-to-end sweeps that cannot be parallelized are required.



2D tensor network state
(Projective Entanglement-Pair States, PEPS)



Projected Entangled Pair States (PEPS)
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- PEPS is a 2D tensor network version of MPS
- Each tensor has virtual bonds on 2D lattice and one physical bond.

- Any state can be transformed into PEPS form
(if we do not limit the bond dimension.)

- Approximation sets the maximum bond dimension y



Isometric tensor network state (IsoTNS)

[Zeletel&Pollmann, PRL 124, 037201 (2020)]

- Tensor network composed of isometric tensors

- To clarify the direction of isometry, we use arrows.

M _ E@E For Isometry, opposite contraction
yields projector.

- Assume that the arrows of physical bonds always point into the tensor.

- For 1D system, MPS’s with canonical form are IsoTNS.

- For 2D system, IsoTNS is a PEPS with Isometric condition.



Isometric tensor network state (IsoTNS)

Unlike in MPS, reversing the direction of Isometry is non-trivial.

Moses move method [Zeletel&Pollmann, PRL 124, 037201 (2020)]

Unlike QR/SVD, Moses move is an approximation method.



Isometric tensor network state (IsoTNS)

Gauging Tensor Network [Tindall&FIshman, arXiv:2306.1783]

- Vidal gauge

¥

- A approximate iterative method to obtain this gauge using belief
propagation has been proposed. [Tindall&Fishman, arXiv:2306.17837]

- Evenbly gauge [Evenbly, Phys. Rev. B 98, 085155 (2018)]



Calculation of expectation value

When taking expectation value of local quantity for PEPS, the
computation time is exponential if we try to take all contractions.
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When taking expectation value of local quantity for PEPS, the
computation time is exponential if we try to take all contractions.




Calculation of expectation value

A possible way of the contraction is “boundary-MPS” method

However, computational cost becomes large.




Calculation of expectation value

A possible way of the contraction is “boundary-MPS” method

MPS MPO  MPS By using the Monte Carlo
method, the computational

’ ‘ cost can be reduced.
2

10

bond dimension y

Calculation cost for MPO-MPS
part scales as O(y”')

However, computational cost becomes large.



Calculation of expectation value

However, in ISOTNS, it is drastically easy.

Problem is that we need “sequential transformation using Moses move."



Calculation of expectation value

GaugingTNS also becomes same to IsoTNS.

Problem is that belief propagation needs sequential optimization.



Parallel TEBD2

- Like pTEBD, local unitary operation can be parallelized
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We are now exploring the way to recover the Vidal gauge efficiently.



Relation to Quantum
Computing



Tensor network and Quantum Circuit
MPS and Quantum Circuit

physical bond R'Q ht canonical MPS ' This side
\ corresponds
to the
physical
I bonds
T

virtual bond

Number of gates = O(x2N)

MPS-based circuits can be simulated efficiently in classical computer.
This means the simulator is useful for preparing the input states by MPS-based circuit



Tensor network and Quantum Circuit
MPS and Quantum Circuit

Absence of barren plateau in 2D IsoTNS circuit [Slattery&Clark, arXiv:2108.02792]
2D IsoTNS A circuit representation of PEPS
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Number of gates = O(x4N)

PEPS-based circuits require exponential computational cost on
classical computers but O(x4N) on a quantum computer.



Summary

Isometric tensor network (IsoTN) and gauging tensor network (GaugingTN) have big advantages for

- evaluating expectation value of local quantity
- sometime accuracy

- converting the classical information to the quantum circuit

However, converting to isometric form requires sequential operations, so it is difficult to parallelize that part.



