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Machine learning for theoretical physics

What am 1?
| am a particle physicist, working on lattice QCD.
| want to apply machine learning on it.

My papers https://scholar.google.co.jp/citations?user=LKVqy wAAAAJ

Detection of phase transition via convolutional neural networks

A Tanaka, A Tomiya Detecting phase transition
Journal of the Physical Society of Japan 86 (6), 063001

Digital quantum simulation of the schwinger model with topological term via adiabatic

state preparation _
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya Quantum computing
arXiv preprint arXiv:2001.00485 for quantum field theory
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What is Lattice QCD?



Introduction

What is QCD?

—— Periodic Table of the Elements
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QCD = Quantum Chromo-dynamics

= A fundamental theory for particles inside of nucleli
Quantum many body, relativistic, strongly correlated




Introduction

Lattice QCD = QCD on discretized spacetime = calculable

»QCD (Quantum Chromo-dynamics) in 3 + 1 dimension ssmecmonss,
.. | "
S = [d4x[ — Etr F,F"+ 1//(1@ + gA — m)t//]

F,=0dA,—d,A, —iglA,A] |

Non-comm

utable version of (quantum) electro-magnetism

e This describes inside of nuclei& mass of
nadrons, equations of states etc

* |f we discretized the system, it becomes
Ike spin-glass + fermions system

e We want to evaluate expectation values with
following integral,

(0) ~ | DADYDyeO

“5 b »- ColoHSipieonductors e We can use Markov Chain Monte-Carlo

supercurrent Baryon Chemical Potential us
ase, Mixed phase

g Quark-Gluon Plasma
& | sQGP

2

=] Critical

& Point
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Introduction
What is our final goal for our research field?

What we want to solve?

- Reduction of numerical cost to beyond our current numerical limitations
- Production and measurements
- Use of machine learning may be useful

Restrictions (problems) to use ML.:
- Exactness & quantitative. Machine learning is an approximator
- Gauge symmetry, global symmetry is essential. While ML is not for physics
- Code. How can we make neural nets w/ HPC? (not showing in this talk)




Machine learning?
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What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

o . X

Akio Tomiya
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E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

1
f{a,b,c}(x) = ax*+bx+c E = 5 Z
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a, b, c, are determined by minimizing £
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What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

V1

f{a,b,c}(x) = ax’+ bx+c

- X

2
f{ a,b,c}(x(d)) _ y(d)

1
f{a,b,c}(x) = ax*+bx+c E = 5 Z
d

a, b, c, are determined by minimizing £
Y (training = fitting by data)

Akio Tomiya
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What is machine learning?

E.g. Linear regression € Supervised learning

Data: D = {(x(l),y(l)), (x®), y@h, }

V1

f{a,bac}(x) = ax’+ bx+c

Use of fitted function =

Inference
> X

X0
Now we can predict y value which not in the data

In physics language, variational method

Akio Tomiya



What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

6x6

&

Input

How can we formulate this “Black box”?
Ansatz?




What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000 ) Ap -
’ robabilit
6x6 0.000 y
0.8434
o736 | _—
= lo03456|— X
: 0.64 I B =
Image is a vector | -5 Regard >
(6x6=36 dim) | : | 1 2 3 4
A jRegard
36 dimension

4
®

‘ Images of “2”

10 dimension

yno

BT $
O

Images of “1”

Image recognition = Find a map between two vector spaces




What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000
6x6 0.000
0.8434
_| 0756 | _—
~lo34s6|= A
: 0.64
Image is a vector | ;,5; Regard
(6x6=36 dim) | :
A

36 dimension Neural net

<
‘.

’ Images of “2”

Input

Y S
Q

Images of “1”




What is the neural networks?

Affine transformation + element-wise transformation

Layers of neuralnets [ =23.... L. 70 =% W. b arefit parameters

Z(l) — W(l)ﬁ’(l—l) + ?(l) Affine transformation

(b=0 called linear transformation)

u(l) _ (l)(Z(l)) Element-wise (local) non-linear.
i i hyperbolic tangent-ish function

A fully connected neural net:
fe(y) — 0(3)(W(3)0'(2)(W(2)7 + b (2)) + ) (3))

@ is a set of parameters: wg), bl.(l),

- Input & output = vectors
- Neural net = a nested function with a lot of parameters (W, b)
- Parameters (W, b) are determined from data

Neural network = map between vectors and vectors
Physicists terminology: Variational ansatz



What is the neural networks?

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)

(0.000 ) AP ili
- robabilit
6x6 0.000 Y
0.8434
o756 | _—
~ 03456 [— A
_ 0.64 . ]
Image is a vector | ;-5 Regarding >
(6x6=36 dim) | : |, 4
$36 dimensi Neural net
36 dimension o/ Input eural ne “0”=(1,0,0,...)
p “1” = (0,1,0,...)
o “2” = (0,0,1,...)
N Images of “2” .-
J Input Output =0.0....7)

T -‘-b variational

Images of “1” map

Deep Learning

Fact: Neural network can mimic any function oyl

= A systematic variational function.

In this example, NN mimics image (36-dim vector) and label (10-dim vector)




What is the neural networks?

Neural network have been good job
Protein Folding (AlphaFold2, John Jumper+, Nature, 2020+), Transformer neural net

100

Score ALPHAFOLD 2
“ Higher is bett o
I g e r I S e e r € / ! '—\\ cov:g:wcc
A.gﬁ“' N
eco | . ALPHAFOLD [} “
a t
O Grerecs = sm‘? |1
40 Input sequencd (8 blocks) | | (" Y
1944 t
NS :\ o —_— 3D slruc(uln:
| frrc)
20 . |
0 « Recycling (three times ]
CASP7 CASP8 CASP9 CASP1I0O CASP11  CASP12 CASP13 CASP14
2006 2008 2010 2012 2014 2016 2018 2020

CASP

Neurallg_e2twork wave function for many body (Carleo Troyer, Science 355, 602 (2017) )

Variational energy
- (lower is better)
10—4 | | |

#1of u%its élc o 8 16 32

Neural net + “Expert knowledge” — Best performance
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Equivariance and convolution

Neural network works quite well in natural science
Protein Folding problem (AlphaFold2, John Jumper+, Nature, 2020+), Transformer

100
Score:
80 " "
Higher is better . e —)
P confidence
N — e |
— o
G brrress - | .14
40 Input sequencd (8 blocks) —> ¢ %g»
e :
- :‘wphm n . 3D slruc(uln:
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Y « Recycling (three times ]

CASP7 CASP8  CASP9 CASPIO CASP1l CASP12 CASP13 CASP14
2006 2008 2010 2012 2014 2016 2018 2020

CASP

Neurallg_e2twork wave function for many body (Carleo Troyer, Science 355, 602 (2017) )

Variational energy
- (lower is better)
10—4 | | |

#1of u%its élc o 8 16 32

Neural net + “Expert knowledge” — Best performance




Introduction

Use of symmetry is crucial

Symmetries are essential for theoretical physics.

This is actually true as well in machine learning.
Equivariance/Covariance of symmetries helps generalization,
and avoiding wrong extrapolation

(Symmetry restricts the function form)

Example in ML.:

If data is translationally symmetric like photo images,

the frame work should respect this and one should implement
with this translational symmetry in a neural network

= Convolutional neural net!

In physics + Machine learning,
= Physics embedded neural networks

We use symmetry in the system
as much as we can



M Otivation Akio Tomiya

Monte-Carlo integration is available, but still expensive!

M. Creutz 1980

. . 1
Target integration — —Sel U1 SolU1 = S,uee U] — log det(D[U] + m)
= expectation value (0) = 7 DUe 6U) ' o

Monte-Carlo: Generate field configurations with “P[U] « ¢ >:tlUl» @ _ It gives expectation value

B ( Propose and check

Markov-
Chain

Production with @ IS numerically expensive
and how can we accelerate it? We use machine learning!



Introduction

Generative neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

o @ [ This Person Does Not Exist X +

- C’k & thispersondoesnotexist.com r VY RO

3 Apps 8 AkioTOMIYA & Google drive [l MIT-LAT B Deep Learningan.. /4 Zenn| 70757..

Realistic Images can be generated by machine learning!
Configurations as well? (proposals ~ images?)



Introduction

ML for LQCD is needed

* Machine learning/ Neural networks

e data processing techniques for 2d/3d data in
the real world (pictures)

* (Variational) Approximation (~ fitting)

* Generative NN can generate images/pictures

e [attice QCD is more complicated than pictures

4 dimension/relativistic T

%}jﬁ T
Lo i{ 1

- T
L

4

* Non-abelian gauge symmetry (difficult)

* Fermions (anti-commuting/fully quantum)
-> Non-local effective correlation in gauge field

 Exactness in MCMC is necessary!

* Q HOW can we deal W|th’? http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/



Introduction

Akio Tomiya

Configuration generation with machine learning is developing

Year | Group ML | Dim. | Theory | Gaugesym | Exact? Fermion? Lattice2021/ref
2017| AT+ +R|-E|;|\I>|Ao 2d Scalar - No No arXiv: 1712.03893
2018| K.Zhou+ | GAN | 2d Scalar - No No arXiv: 1810.12879
2018 | J. Pawlowski + fm\‘c 2d Scalar - Yes? No arXiv: 1811.03533
2019 MIT+ | Flow 2d Scalar - Yes No arXiv: 1904.12072
2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413
2020 MIT+ Flow 2d SU(N) | Equivariant Yes No arXiv: 2008.05456
2020 AT+ |SLMC| 4d SU(N) | Invariant Yes Partially arXiv: 2010.11900
2021 | M. meavidovic+ | A-NICE | 2d Scalar - No No arXiv: 2012.01442
2021 |S. Foreman | L2HMC| 2d U(1) Yes Yes No

2021| AT+ |SLHMC| 4d QCD | Covariant Yes YES!

2021 D:-bg% Flow 2d | Scalar, O(N) - Yes No

2021 MIT+ | Flow | 2d | Yukawa - Yes Yes

2021/ S Foreman, | Flowed | 2d U(1) | Equivariant| Yes | No but compatible | arXiv: 2112.01586
2021| XY Jing | Neura 2d U(1) | Equivariant | Yes No

2022 | J. Finkenrath | Flow 2d U(1) | Equivariant Yes |Yes (diagonalization)|  arxiv: 2201.02216
2022 MIT+ Flow 2d U(1) Equivariant Yes Yes (diagonalization) arXiv:2202.11712

This is not complete list. Related to lattice field theory and biased

+ ...




2 cases In lattice theory:
Configuration generation

1. Flow-based sampling

2. Transformer (Not gauge theory)



Flow-based sampling



Flow based sampling algorithm

Change of variables makes problem easy

Ising model QFT

D e PBI0[s)

15}

Ising Model

a

.

/

?

Energy function (Hamiltonian)

72,2003.06413, 2008.05456 and more.

»

Akio Tomiya

JDqﬁe—SW]O[qb]

Ising Model
¢

¢

$;€R

Energy function (Euclidean action)

s--3

l

[ ) i+ biy = 20) + 7]
2!

arxiv 1904.12072,



Akio Tomiya

Flow based sampling algorithm

Change of variables makes problem easy
We want this (Green’s function)

[que l2l0[p]  Evaluation is hard

(1M dimension integration)
Back to high school,

- Integration by parts
- Change of variables

Are there any good “Change of
variables” for QFT?

arxiv 1904.12072, 2003.06413, 2008.05456 and more.



Flow based sampling algorithm

Change of variables makes problem easy

[nge‘5[¢]0[qb] = JDZ detaa—¢
4

=] acogian=J

e—S[¢[z]]0[¢[Z]]

Seilz] = Sl@lz]] —log J[Z]

— JDze—Seff[z]O[¢[Z]]

If this is easy to sample (or integrate),

we are happy

arxiv 1904.12072, 2003.06413, 2008.05456 and more.



Flow based sampling algorithm

Viewpoint: Change of variables makes problem easy
Simplest example: Box Muller { 7 = e—%(x2+y2)

Change
tan @ = y/x of variables

= = 1.2 1.2 2 1
[ de dy e 2" 720 — l[ d@J dz
—00  J—0o 2 ) 0

Target integral: hard Easy

Change of variables sometimes problem easier (this case, it makes the measure flat)

RHS is flat measure 51 ~ (0,271')

—We can sample like right eq.

(uniform) 52 ~ (O,l)

We can reconstruct X = 7 COS 9 9 — 51

a field config x,y
for original theory

like right eq. y —=r Sin 6 r = \/_2 log 52

arxiv 1904.12072, 2003.06413, 2008.05456 and more.




Flow based sampling algorithm

Trivialization is attractive

Pr(P) -
i I —S[¢] f
QFT probability: Pl¢p] = —e = P(¢, ¢y, -+, Pr4) -
Propagating modes 4

~ correlations _ _
Can we find a change of variable?

: . . I’(Z) A

Point-wise prob. dist. Ptri f
— r r ooor

Trivial theory [2] = rz)r(z)-+r(zp4) -

No propagation r(z;) probability for 1 variable
(Not the Gaussian FP)

- Correlations in P[¢] makes theory non-trivial and it makes MCMC harder.
- PM[7] = r(z21)r(2,)---r(z74) has no correlation, sampling is trivial.
- Actually, there is a map between them. Trivializing map!

- We can trivialize the target theory

Famous example: Nicolai map in SUSY. Change of variable
makes theory bilinear (~trivial). How about for non-SUSY?

arxiv 1904.12072, 2003.06413, 2008.05456 and more.

Nicolai, H., Phys. Lett. 89B, 341 (1980); Nucl. Phys. B176, 419 (1980).



Related WO rks Akio Tomiya

Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

)= %[ [ H H H H dipy, € POy, ]

x€100 ye100 ze100 r€100

~

¢ = F T(Cb) Flow equation (change variable)

If the solution satisfies S(F (¢)) + In det(Jacobian) = Z qlg,zl ,

o= [[ T T1 IT T o5+

x€100 ye100 z&100 r€100

It becomes Gaussian integral! Easy to evaluate!!

However, the Jacobian cannot evaluate easily, so it is not practical.
Life is hard.

M. Luscher arXiv:0907.5491
arxiv 1904.12072, 2003.06413, 2008.05456
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Related works

Flow based algorithm = neural net represented flow algorithm

Real scalar in 2 dimension MIT + Google brain 2019~

.7 TN L7 RS
. N
. N . N
’ h 4 \
' h \
' \ |' g /\ A
' 1
Z 1
' [ = —
b, 4 \ 3 (e Si
\ 1 s ’ \ N
. 3 \_
N e
~ P
~ -

couple

. . 4 - v; . Y
- N TN\
r(z) Py () (=) (@)
cen 0t ity .. 2 04 4
- ‘ - \/ @\. ( @
combine

(a) Normalizing flow between prior and output distributions

-4 @

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ¢ distributed
according to ps(¢). The mapping f~'(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling
layer, p¢(¢) can be made to approximate a distribution of interest, p(¢).

Train a neural net as a “flow” ¢ = F(¢)
If it is well represented, we can sample from a Gaussian
It can be done “Normalizing flow” (Real Non-volume preserving map)
Moreover, Jacobian is tractable!

arxiv 1904.12072‘ 2003.06413‘ 2008.05456
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Related works

Flow based algorithm = neural net represented flow algorithm

Real scalar in 2 dimension MIT + Google brain 2019~

.7 TN L7 RS
. N
. N . N
’ h 4 \
' h \
' \ |' g /\ A
' 1
Z 1
' [ = —
b, 4 \ 3 (e Si
\ 1 s ’ \ N
. 3 \_
N e
~ P
~ -

couple

. . 4 - v; . Y
- N TN\
r(z) Py () (=) (@)
cen 0t ity .. 2 04 4
- ‘ - \/ @\. ( @
combine

(a) Normalizing flow between prior and output distributions

-4 @

(b) Inverse coupling layer

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ¢ distributed
according to ps(¢). The mapping f~'(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling
layer, p¢(¢) can be made to approximate a distribution of interest, p(¢).

Their sampling strategy

sample gaussian — inverse trivializing map — QFT configurations

Calculate Jacobian
After sampling, Metropolice-Hasting test (Detailed balance)— exact!

arxiv 1904.12072‘ 2003.06413‘ 2008.05456
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Related works

Flow based algorithm = neural net represented flow algorithm

Real scalar in 2 dimension

MIT + Gooale brain 2019~

Tingt | nt

off int O E o G.0)

: 0 m, OF . c

on  2pt function " | o , 5 v2 & Ace
[ SUoT I / or

o -6~ HMC - Local - ML : “o- HMC == Local ~ ML Mo (0) .

.05 | 0.300f g - ¢ é 50% ML models
.04} 0.295F a 4 Q--é—--g
0 . —0.06(5

.03 0.290 £ 2 2] Lo
_ 0985 S e A 1,-001(T)
1027 1 1,144(3) L & | =
0.280F ! ,/Q [ 70% ML models
0.275 . : . Lo.m());;’;:_s |
0.5 @ 1,031(2) )5
o s 10 12 1u L 6 s 10 12 u L

(a) HMC ensembles (c) Flow-based MCMC ensembles

U(1) gauge theory in 2 dimension. Topological charge is well sampled!

Q |
5 . — HMC
0 — HB
-2 — Flow
_4 I

| | | 1
40000 60000 80000 100000

Markov chain step

0 20600
Applied already on SU(N)
4d? Fermions?

-> OK
arxiv 1904.12072, 2003.06413, 2008.05456



Transformer for spin + fermion system
as a test case for Lattice QCD



Transformer and Attention

Attention layer used in Transformers (GPT, Bard)  axi:1706.0s762

Output @} OpenAl
Probabilities
| Softtmax ) ChatG PT

| Lintaar )
([ Add & Norm h\
Fe.ed a r
Forward
| I *
== ||E=
Feed Attention
=5 Q Deepl
LAdd & Norm =
N> | —(Add & Norm ) —
Multi-Head Multi-Head
Attention Attention
— ) = Attention layer (in transformer model) has been
Positional Positional . " '
encoding (P ¢ =i introduced in a paper titled
Input Output - -
Embé;ddmg Embc}gding “Attention is all you need” (1/06.03762)
- o State of the art architecture of language
(shifted right)

processing.
Attention layer is essential.

Figure 1: The Transformer - model architecture.



Equivariance and convolution

Akio Tomiya

Knowledge > Convolution layer = trainable filter, Equivariant

Filter on image

Laplacian filter

01]o0
K o|1]2]+
0|1]0

(Discretization of 9%)

shift to right

Edge detection

Trainable filter

W11

W12

W13

>I< W21

W22

W23

W31

W32

W33

shift to right

shift to right

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

Translational operation is commutable with convolutional neurons (equivariant)

This can be any filter which helps feature extraction (minimizing loss)
Equivariance reduces data demands. Ensuring symmetry (plausible Inference)
Many of convolution are needed to capture global structures




Transformer and Attention

Attention layer can capture non-local correlations axi:170s.0s7:2
Modifier in language can be non-local

rel T

Eg.| am Akio Tomiya living in Japan, who studies machine learning and physics

In physics terminology, this is non local correlation.
The attention layer enables us to treat non-local correlation
with a neural net!

Simplified version of Attention/Transformer

| Skip connection

I »| WX | M = W WKX)T
/" | Non-local product v
X = am B WKX (Non-local
Akio correlation)
. — VY x Add & normalization |— X’
| ReLUM)W'X | — T
Weighted
Array of S
word vectors spin
Transf.
Word~\{ector (Trainable) Self-Attention
X: matrix T

hese can be reieated



Transformer and Attention

Transformer shows scaling lows (power law) rXiv: 200108361
7 4.2
6 —— L=(D/5.4-1013)700% | 5.6 —— L=(N/8.8-101%)"0076
3.9
4.8
o 5
2 3.6 4.0
- 4
® 3.3 3.2
= 3
3.0
2.4
L= (Cmm/2.3 . 108)—0'050
2 . - - - 2.7 Y . - - .
107 1077 107> 103 10°! 10! 108 109 10° 107 107
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute’ used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

- Transformers requires huge data
(e.g. GPT uses all electric books in the world)
Because it has few inductive bias (no equivariance)
- It can be improved systematically



Transformer and Attention

Physically symmetric Attention layer

Attention layer can capture global correlation
Equivariance reduces data demands for training

Equivariance Captura!o le Data demmands Applications
correlation
Convolution | . | Image recognition
(e equivariant Yes = | ocal & Low = VAE, GAN
layers) Normalizing flow
Standard 5 22 ChatGRPT
Attention layer No Q) GIObaI -E Huge @ . Barad
Vision Transformer
arXiv:1706.03762
(This work)
Physically | | :
Equivariant Yes 5 GIObal ~E ? ThIS WOrk
attention arXiv: 2306.11527




Self-learning Monte-Carlo

Target: Double exchange model

Target system: Classical Heisenberg spin S.+ Fermion on 2d lattice

Two different phases

- Anti-ferromagnet (~staggered mag)
- Paramagnet (~normal metal)

(This system is similar to lattice QCD
but easier)




Self-learning Monte-Carlo

Previous work

Target system: Classical Heisenberg spin S.+ Fermion on 2d lattice

. S. EO Jeff n-th nearest neighbor

Self-learning Monte-Carlo:

Update with H ¢, and Metropolis-Hastings with H
This is an exact algorithms

J,fff is determined by regression (training) to improve acceptance



Self-learning Monte-Carlo

Previous work

Target system: Classical Heisenberg spin S.+ Fermion on 2d lattice

Naive effective model:

H_ Linear _ _ Z ]’fl’ffsl. : Sj E, J: n-th nearest neighbor
<i’j>7’l
. — _ elfGNN | QNN
_ b H =— ) JTSW.SNN 4 [
We replace this by —
“translated” spin SZ.NN ()

with a transformer
and used in self-learning MC



Self-learning Monte-Carlo

Physically equivariant Attention layer/Transformer

Equivariant Transformer block

Add & |—— S’ =%ﬁ
\v

A Spin configuration

A Spin configuration

Skip connection

> /V(S-I—&A))ES' -

Akio Tomiya

arXiv: 2306.11527.

— S’

\_ Add & Norm (normalization) Y

Our neural network respects symmetries

In the system. Also, it can capture

Attention
Norm
I
:
4 N
S >| WOS [— | M = WOS(WKS)T
Array Block- Non-local product
of spin spin l(CorreIation functions}
vectors L
(1 conf) WEKS | [SW =ReLUM)W"S > §(A) —
Block- A
spin
—p
wYs
Block-|
spin
long-range correlations

\_ Self-Attention )




Self-learning Monte-Carlo

SLMC = MCMC with an effective model

For statistical spin system, we want to calculate expectation value with

W({S}) o exp[—pH({S})]
On the other hand, an effective model H_+({S}) can compose in MCMC,
{ S }—={ S } = S }—{ S } this distributes W_5({S}) o exp[—fH_({S})]

if the update "—, satisfies the detailed balance. We can employ Metropolis test like

Ae({S}, (S}) = min (1,Wx({S'})/Wex({S))) .



Self-learning Monte-Carlo

SLMC = MCMC with an effective model

For statistical spin system, we want to calculate expectation value with

W({S}) x exp[—/H({S})]
On the other hand, an effective model H_+({S}) can compose in MCMC,
{ S }—={ S } = S }—{ S } this distributes W_5({S}) o exp[—fH_({S})]

if the update "—, satisfies the detailed balance. We can employ Metropolis test like

Ae({S}, (S}) = min (1,Wx({S'})/Wex({S))) .

SLMC: Self-learning Monte-Carlo
We can construct double MCMC with H({S}) and H,({S})

S} {8} = {S}—= {8} {S} —={S} = {S}—{S}—

W({S'}) Wer(1S})
WS} Wes({S) )

with Metropolis-Hastings test: A({S’}, {S}) = min (1

- Effective model can have fit parameters

- Exact! It satisfies detailed balance with W({S}) (exact)
- It has been used for full QCD too (arXiv: 2010.11900, 2103.11965)



Transformer and Attention aXiv: 230811527 » uodare

Application to O(3) spin model with fermions

Acceptance rate ~ efficiency Observables
11 Transformers —e— g2,
Linear —&— 0.15 ,-1 e
2 08 = 01 -
© Pz Original —<—
o . _ 0.05 ¢ Linear .
S 0.6 Models with the attention 0 - 3layer attention —=—
= e
A &
g 04 o8 | Staggered mag.
< | < 06
0.2 I (same as previous work , = 04}
No attention) 02 | g
O | | | | \ \ \ 0 * ] * s .
0 1 2 3 4 5 6 7 8 0.01 0.1 1 10

Num. of attention layers T
~ # of parameters
Note: As far as we tested,
CNN-type does not work in this case.
No improvements with increase of layers.
(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

o Io.o NXZNyZG

uli ‘Lattice sites!

Physical values are consistent
(as we expected)



Transformer and Attention

Akio Tomiya

Loss function shows Power-type scaling law as LLM

Acceptance rate = exp (—\/ MSE)

10 |

—h

Estimated |_OSS (M S E)

0.01

julia

Transformers O

Linear O
. Model w/o
- attention
©)
Models with the attention |
fit range
1 10 100

num. of trainable parameters

(1 layer ~ 30 parameters)

arXiv: 2306.11527 + update

5.6 ~—— L=(N/8.8-1013)"0076

4.8

4.0

3.2

Test Loss

*4| Scaling in LLM [1
10° 107 10°
Parameters

| Line IS just for
| guiding eyes

(ho meaning)

fit ~(7.1/x)A(1.1)

[1] arXiv:2001.08361
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AI(ML) + Science
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AI(ML) + Science

R o IEHEIC
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Su m m a ry Akio Tomiya

Machine learning + lattice field theory

* Machine learning is useful for natural science/physics/Lattice QCD
 Multi-dimensional integration is done by MCMC
e MCMC proposals can be made by Machine learning
 Transformer for a spin+fermion system
e Scaling law for a Transformer for physical system
 Future work: Transformer for lattice gauge theory

e Combining ML and expert knowledge (e.g. symmetry) of
computational physics/LatticeQCD is important

e How can we use Al for science (open question)

 We know Al is useful for data generation though

e KAKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Thanks!
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